1. INDICATION (INCOMING FIRE ALARM CONDITION)

ALARM LED FLASHING

Loop X sensor X TYPE
LX SX ZX STAT:ALARM
DATE & TIME
ACKED ZONE ALARMS X OF XX
LCD DISPLAY of
DESCRIPTION TYPE, ADDRESS,
DATE & TIME
and No of ACKNOWLEDGED ALARMS

2. ACKNOWLEDGE ALARM

PRESS ACKNOWLEDGE KEY

PRESS NEXT TO SCROLL TO NEXT ALARM

3. REPEAT THE ABOVE STEPS TO ACKNOWLEDGE ALL ALARMS

ALARM LED STEADY

Loop X sensor X TYPE
LX SX ZX STAT:ALARM
DATE & TIME
ACKED ZONE ALARMS X OF XX
LCD DISPLAY of
DESCRIPTION TYPE, ADDRESS,
DATE & TIME
and No of ACKNOWLEDGED ALARMS

4. ISOLATE BELL

PRESS TO ISOLATE BELLS INDICATOR WILL TURN ON

5. RESET ALARMS

PRESS TO RESET ALL ACKNOWLEDGED ALARMS

6. ACKNOWLEDGE RESET

PRESS ACKNOWLEDGE KEY
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>About This Manual</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 General Requirements</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.3 References</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.4 Symbols</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>System Overview</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2.1 FACP Configuration Examples</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>FireFinder Description</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Placing the Basic System into Operation</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>4.1 Unpacking</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>4.2 Anti-Static Precautions</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>4.3 Working On The System</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>4.4 The Cabinet</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>4.5 Mounting The Cabinet</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>4.6 Operational Parameters</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>4.7 Cabling Recommendations</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>4.8 Power Supplies and AC Mains Installation</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4.8.1 Connecting the Mains Earth</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>4.8.2 Connecting the Mains Power to the Power Supply</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>4.9 Current Limiter, Fuse Board (BRD85CLFB)</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>4.10 Brigade / PSU Monitor Board (BRD85BPMB)</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>4.10.1 Battery Connections (TB1)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>4.10.2 Auxiliary 27 Volt Power (TB2)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>4.10.3 Bell / Sounder Monitored Outputs (TB3 & TB5)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>4.10.4 Warning System connections (TB5)</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>4.10.5 Relay Output Connections (TB6 – TB10)</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>4.10.6 DBA / MCP & Door Switch Connections (TB11)</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>4.10.7 ASE Fault Brigade Box Connection (CN6)</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>4.11 Main Board (BRD85MBA)</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>4.12 Front Panel Board (302-690)</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>4.13 Main CPU (BRD85CPU)</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>4.14 Slave CPU (302-669)</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>4.15 Conventional Zone Board (302-671)</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>4.16 Addressable Loop Termination Board (302-735)</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>4.17 Addressable Loop Termination Board (BRD86DLTB-B)</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>FireFinder Control Panel</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>Functions And Menus</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>6.1 The Default LCD Display</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>6.2 Accessing Functions and Menus</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>6.3 Function Menu and Access Levels</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>The Main Menu</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>7.1 Status Menu</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>7.2 Testing Menu</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>7.2.1 Alarm Test</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>7.2.2 Fault Test</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>7.2.3 Lamp Test</td>
<td>29</td>
</tr>
<tr>
<td>8</td>
<td>Main Functions</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>8.1 Setting the Function Date Facility</td>
<td>30</td>
</tr>
</tbody>
</table>
8.2 Setting the Function Time Facility .. 30
8.3 Setting the Function Daynight Facility .. 30
8.4 Function Logs Facility .. 30
8.5 The Function Test Facility .. 31
8.6 Function Manual I/O Control ... 32
8.7 Function Access (Level II) / Passwords (Level III) 32
 8.7.1 Forgotten Passwords ... 33
8.8 Function Programming ... 34
 8.8.1 Conventional Zone Programming .. 34
 8.8.2 Device Programming ... 35
 8.8.3 Input Programming .. 35
 8.8.4 Output Programming .. 35
 8.8.5 Manual Call Point (MCP) .. 36
 8.8.6 Sub Address ... 36
 8.8.7 Watchdog ... 36
 8.8.8 Self Learn .. 36
 8.8.9 Extra Devices Detected .. 36
 8.8.10 Mismatch Detected .. 37

9 Incoming Fire Alarm Signal .. 38

10 Accessing a Loop, Sensor or Zone ... 39

11 Expanding the FACP with Compatible FireFinder Boards 40
 11.1 Ancillary Services ... 40
 11.2 Compatible FireFinder Boards .. 41
 11.3 16/16 Input / Output Board (302-672) .. 42
 11.4 8 Way Relay Board (302-6760/1) ... 42
 11.5 16 Way Input Board (302-677) .. 43
 11.6 Serial Relay Board (302-732) ... 43
 11.7 Fire Fan Module (BRD25FCB) ... 44
 11.8 Fan Termination Board (BRD25FTB) ... 44
 11.9 Zone & General Indicator Card (BRD85GIBB) 45
 11.10 Switch and Indicator Card (BRD25GIB - B) ... 46
 11.11 8 Way Sounder Monitor Board (302-7420/1) 47
 11.12 Printer ... 48
 11.12.1 Indicators and Buttons ... 48
 11.12.2 Maintenance .. 49
 11.12.3 Printer Connections and Jumpering ... 51
 11.12.4 Printer 5 Volt Power Supply (BRD42PVCB1) 51
 11.13 Agent Release Control .. 52
 11.13.1 Agent Release Module (BRD25ARB-A) .. 55
 11.13.2 Local Control Station (BRD25ARB-B) .. 56
 11.13.3 Agent Release Termination Board (BRD25ATB) 59
 11.13.4 Interface Wiring ... 60
 11.14 Warning Signs .. 61
 11.15 Occupant Warning Systems ... 63
 11.16 EV60 / 120 ... 67
 11.17 EV3000 ... 67

12 Brigade Devices ... 68
 12.1 ASE (Vic Metro) Brigade Box ... 68
 12.2 Brigade Box (Deltec WA, SA, TAS, QLD) ... 68

13 Expanding the System through Networking ... 69
 13.1 Communications: Network Interface Card (BRD85NIC) 69
 13.2 Communications Extender Board (BRD82LTK) 71
13.3 High Level Interface Expander (BRD43SPB) ... 72
13.4 Expansion Board (302-688) .. 74
13.5 Expansion Controller (159-0077) ... 74

14 SmartTerminal... 75
14.1 SmartTerminal Controls and Indicators .. 75
14.2 LCD Screen Format ... 79
14.3 Operation .. 81
14.4 Setting the Address ... 82
14.5 Mechanical .. 83
14.6 Installation & Cabling ... 84
14.7 Specifications ... 85
14.8 Setting the SmartTerminal Controller Configuration in ConfigManager 86
14.9 Setting the SmartTerminal Reporting Parameters in ConfigManager 86
14.10 Trouble Shooting Chart ... 87

15 RS232 Modem / Programming / Debug Interfacing .. 88

16 List Of Compatible Detectors ... 89

17 Certification Information .. 90

18 Troubleshooting Chart ... 91

19 Address Setting .. 92

20 Glossary of Terms ... 93

21 Definitions ... 94

22 Quick Reference Guides ... 95

23 Statement of Compliance .. 97
23.1 Installation Details .. 99

24 Commissioning Test Report ... 100
24.1 Procedure .. 101
24.2 System Information ... 101

25 Battery Capacity Calculation ... 104
1 About This Manual

1.1 Introduction

This manual contains all the information required to install, commission and operate the FireFinder SERIES II Fire Alarm Control Panel (FACP) fitted with Version 6 software and is only available to and for the use of personnel engaged in its installation, commissioning and operation.

1.2 General Requirements

The FireFinder Series II FACP has been designed and manufactured from high quality commercial components so as to comply with major world standards. To ensure these standards are not compromised in any way installation staff and operators should;

- Be qualified and trained for the task they undertake;
- Be familiar with the contents of this manual prior to the installation, commissioning or operation of a FireFinder control system;
- Observe anti-static precautions at all times; and
- Be aware that if a problem is encountered or there is any doubt with respect to the operational parameters of the installation the supplier should be contacted.

1.3 References

FireFinder Technical Manual

ConfigManager

FireFinder Detector Manual

Australian Standards:

AS4428 - Fire Detection, Warning, Control and Intercom Systems – Control and Indicating Equipment. Part 1 and Part 5

1.4 Symbols

\[\text{Important operational information}\]

\[\text{Configuration considerations}\]

\[\text{Observe antistatic precautions}\]

\[\text{Mains supply earth}\]

\[\text{DANGER mains supply present}\]
2 **System Overview**

The **FireFinder Series II** is an Intelligent Analogue / Addressable and / or Conventional Fire Alarm Control Panel capable of supporting:

- Apollo Discovery and XP95 Intelligent Detectors, Multisensor, Photoelectric, Ionisation, Thermal (heat) and CO detectors.
- Addressable Initiating Devices: Modules that monitor any conventional normally open contact such as supervisory switches and flow switches.
- Conventional two wire zone detector circuits
- Multiple input/outputs
- High Level Interfaces
- **SmartGraphics**
- **SmartTerminal**
- Remote LED mimics
- Peer to Peer networking
- Master Slave (Main - Sub) networking
- Main panel plus Data Gathering Panels networking

The panel is built to comply with the following standard:

- Australian Standard: AS 4428 parts 1 & 5

Figure 1: Typical Application
2.1 FACP Configuration Examples

Figure 2: Typical Example of an SP1X Layout

Figure 3: Typical Example of an SP8X Layout
3 FireFinder Description

The following description does not relate to specific cabinets as the size of each cabinet will vary with the amount of hardware fitted.

The heart of the FireFinder Series II consists of two boards collectively known as the Controller. These boards are the Main Board (BRD85MBA) and the CPU board (BRD85CPU). Combining these two boards with a front panel forms the basis for a FireFinder Series II FACP. A single Controller without an expansion board has the capacity to interface to four (4) Slave CPU’s modules. Each of these Slave CPU’s can interface to 16 Zone Conventional Termination Boards, Loop Termination Boards or Input/Output Boards as well as communicate with the Brigade / PSU Monitor Board.

The Main Board has the Slave CPU Board for the first Loop Termination Board and the provision for mounting of up to three additional Slave CPU’s. The Slave CPU’s all have the same software installed and the manner in which they operate is automatically determined by the type of termination or interface board onto which they connect.

If the system is to be expanded to have more than four Slave CPU’s an Expansion Board is required. This board contains Slave CPU No. 5 and expansion sockets for three more. This configuration allows for a maximum number of 8 Slave CPU’s that any one Controller can accommodate.

If a system is required to be expanded beyond eight Slave CPU’s then either local networking using up to a total of four controllers (max 32 Slave CPU’s) within the one cabinet may be fitted or external networking must be used.

The FireFinder Series II has an internal ASPI (Ampac Serial Peripheral Interface) serial bus. This serial bus provides interfacing to the Brigade /PSU Monitor Board and if required up to eight (8) Sounder Board’s.

FireFinder Series II has a second serial interface that connects to ancillary boards these can be used to control and monitor field plant equipment or the addition of an agent release module.

Where the system design exceeds the capability of one FireFinder Series II then other FireFinder Series II panels can be networked together to provide an expanded system containing multiple boards in a variety of applications.

Some of these applications include:

- A Master / Slave (Main Sub) FACP arrangement (MFACP / SFACP)
- A Peer to Peer System
- Use of Data Gathering Panels (DGP’s)
- SmartTerminal
- SmartGraphics

A Network FireFinder Series II System supports a combination or all these options on a single network. Each panel on the network is regarded as a “node”. The NETWORK BUS is accessed using a Network Interface Card. The network configuration determines whether a NIC is required. Configurations can be;

Master / Sub FACP: Where there is one or more FACP’s configured as local panels then each report the status of their associated zones/devices to a MFACP. There is no control between local panels as the MFACP is structured to have full control of the entire system.

Peer to Peer: Each FACP is regarded as a Master FACP and therefore a user can take control of the entire fire system from any FACP.

Data Gathering Panel: The use of this type of panel may be installed where there is a need to have field terminations only at one location and all control is performed by an FACP that is remotely located.

SmartTerminal: Provide the user with the ability to monitor the status of designated areas or an entire site as well as execute specific interrogation tasks.

SmartGraphics: Is an active graphics system connected to the FireFinder Series II.
Figure 4: Single Controller Board with Expansion Board
4 Placing the Basic System into Operation

4.1 Unpacking
Carefully unpack the FireFinder.
The package should include:
- FireFinder SERIES II Fire Alarm Control Panel
- An Operators manual
- 003 keys

4.2 Anti-Static Precautions
To prevent damage to components, modules and boards, anti-static precautions MUST be observed while performing any task within the FACP. The same applies to those situated in the field

4.3 Working On The System
Prior to unplugging any connector, connecting or disconnecting any wiring, removing or replacing any module or board, ensure that both the Mains and Batteries have been isolated to prevent damage to panel components.

4.4 The Cabinet
Features:
- The cabinet is available in three different styles. Each style has the capability of being either surface or flush mounted. When flush mounted a separate surround is required.
- Normally painted Arch White Ripple. Other colours are available on request.
- The inner and outer door hinges are mounted on the left-hand side of the cabinet which allow the doors open to an angle of 100º. Locking is normally keyless though keyed entry is available on request.
- Knockouts are positioned at the top and rear of the cabinet to simplify cable entry. The larger range of cabinets use a removable gland plate to allow for the greater amount of cabling

4.5 Mounting The Cabinet

\[\textbf{Note: It is recommended the cabinet should be installed in a clean, dry, vibration-free area.}\]

Open the front door. Use the keyhole mounting holes in the top corners and in the lower middle of the unit to mount it on the wall. Cables to connect the system to its external actuating devices are brought in through the knockouts on the top or bottom of the cabinet.

\[\text{Figure 5: Example SP1X Back Pan Mounting Hole & Removing Knockouts}\]
4.6 Operational Parameters

GENERAL

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max No of Devices per Loop</td>
<td>126</td>
</tr>
<tr>
<td>Max No of Devices per Conventional Zone</td>
<td>40</td>
</tr>
<tr>
<td>Cable Loop Characteristics</td>
<td>2 core. 1.5 to 2.5mm²</td>
</tr>
</tbody>
</table>

POWER SUPPLY

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Output Voltage</td>
<td>27.4V</td>
</tr>
<tr>
<td>Power Supply Output Current</td>
<td>2Amp, 5.6Amp or 18Amp</td>
</tr>
<tr>
<td>Power Supply Input</td>
<td>85 - 264VAC (47 – 63Hz)</td>
</tr>
<tr>
<td>Panel Current Draw</td>
<td>220 mA (min)</td>
</tr>
<tr>
<td>Minimum Operating Voltage</td>
<td>19.2 V</td>
</tr>
</tbody>
</table>

Battery Type & Capacity

- 2 x 12V sealed lead-acid
- SP1,2 & M = 12AH
- SP4 = 24AH
- SP8 = 24AH

ENVIRONMENTAL

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>-5°C to + 55°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>25% to 75%</td>
</tr>
<tr>
<td>IP Rating</td>
<td>IP51</td>
</tr>
</tbody>
</table>

MECHANICAL

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>1.2mm Steel</td>
</tr>
<tr>
<td>Finish</td>
<td>Arch White Ripple Coat</td>
</tr>
<tr>
<td>Dimensions</td>
<td>495mm (H) x 397mm (W) x 125mm (D)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>450mm (H) x 400mm (W) x 130mm (D)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>420mm (H) x 515 mm (W) x 140mm (D)</td>
</tr>
<tr>
<td>Dimensions</td>
<td>840mm (H) x 515mm (W) x 140mm (D)</td>
</tr>
</tbody>
</table>

4.7 Cabling Recommendations

Conventional Zones

Cabled in red Twin Plastic Sheath (TPS), Fire rated Radox or approved equivalent.

Analogue Loop

Two core cable. The minimum cable size is 0.75mm², the maximum loop resistance is 50 ohms and the maximum loop distance is 2km.

RS 485 Network

Single twisted pair screened (2 core) cable originating from FACP extending through the protected areas and returning to the FACP.

Cable Specifications

- Capacitance of 100 Pico farads per metre or less
- Resistance of 100 milliohms per metre or less
- Impedance of loop typical 100 to 120 ohms
- Maximum distances between modules 1.2km providing cable meets above specifications.

Recommended cable type

- Belden 8132 or 9842 (non fire rated)
- Radox FR Communication 0.75mm 1 pair (fire rated) x 2

SmartTerminal

- Single twisted pair shielded cable (2 core) plus 2 core power, or local supply. Maximum distance between from the last SmartTerminal and the FACP is 1.2km.
LED Mimic (RS485)
Single twisted shielded cable (No return loop) plus 2 core power or local supply.
Maximum distance between each LED repeater card and FACP is 1.2km.

Recommended Cable Type
Hartland HC2335
Belden 9841
Radox FR Communication

Fire Alarm Bell Connection
Two core 1.5mm² PVC sheathed MIMS (Mineral Insulated Metal Sheathed) to the bell location.

Brigade Connection via Telecom
Two core 1.5mm² PVC sheathed MIMS from the FACP to the Telecom MDF.

RJ45 Multi-drop Serial Port
8 core Flat cable

4.8 Power Supplies and AC Mains Installation
Generally the AC Mains will be connected to either a 2 Amp, 5 Amp or 18Amp 27 volt supply. These supplies will be either mounted in the upper or lower right hand corner of the cabinet with the Brigade Board mounted above or below. The wiring should enter the cabinet through the nearest knockout entry hole on that side. See the following diagrams for the actual wiring and fusing details for each supply.

Common Power Supply Features & Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>High efficiency, low working temp.</td>
<td>High efficiency; low ripple noise</td>
</tr>
<tr>
<td>Universal AC input/full range</td>
<td>Soft start with limiting AC surge current</td>
</tr>
<tr>
<td>Short circuit/over load</td>
<td></td>
</tr>
<tr>
<td>Built in EMI Filter and PFC Circuit</td>
<td>Remote control on/off (option)</td>
</tr>
<tr>
<td>Over voltage protection</td>
<td>Over temp. protection (option)</td>
</tr>
</tbody>
</table>

Input Voltage:	85 to 264 VAC	Tolerance at 27V	+/- 1%
Input Freq	47 to 63Hz.	Load Regulation	+/- 0.5%
PFC	0.95~230VAC	Line Regulation	+/- 0.5%

Power Supply Specifications

<table>
<thead>
<tr>
<th>Type No</th>
<th>Output</th>
<th>Tolerance</th>
<th>R & N</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-60-27</td>
<td>27V @ 2.2A</td>
<td>± 1%</td>
<td>150mV</td>
<td>79%</td>
</tr>
<tr>
<td>SP-150-27</td>
<td>27V @ 5.6A</td>
<td>± 1%</td>
<td>150mV</td>
<td>84%</td>
</tr>
<tr>
<td>SP-500-27</td>
<td>27VDC @ 18A</td>
<td>± 1%</td>
<td>200mV</td>
<td>86%</td>
</tr>
</tbody>
</table>
4.8.1 Connecting the Mains Earth

All earth cabling shall be terminated to the panel Chassis Earth Terminal in a star configuration.

The earth cable closest to the cabinet body shall have an M4 SPW beneath the lug then an M4 SPW and M4 nut.

Each additional earth cable shall be terminated with an M4 SPW and M4 nut.

An additional M4 nut and M4 SPW are fitted to the Chassis Earth Terminal for installers to connect their Mains Earth.

![Diagram of Panel Earthing](image)

Figure 6: Panel Earthing

4.8.2 Connecting the Mains Power to the Power Supply

Terminate the mains power to the 240 VAC switch terminal block as shown below.

2 AMP Power Supply

Output Voltage: is set to 27.4Volts.

Mains cable should be no less than 0.75mm"
5 AMP Power Supply
Output Voltage: is set to 27.4 Volts.
Mains cable should be no less than 0.75mm”

18 AMP Power Supply
Output Voltage: is set to 27.4 Volts.
Mains cable should be no less than 0.75mm”
4.9 Current Limiter, Fuse Board (BRD85CLFB)

The Current Limiter, Fuse Board provides protection for the boards, cards and other 27VDC distribution within the FACP when the 18Amp power supply is used. The four LED’s associated with the board indicate that 27VDC is available at each of the outputs CN1 – 5.

![Diagram of Current Limiter Fuse Board]

Figure 10: Current Limiter Fuse Board
4.10 Brigade / PSU Monitor Board (BRD85BPMB)

The Brigade / PSU Monitor Board monitors and controls the power supply, battery charging, monitored/un-monitored inputs, outputs and the 7 relay outputs.

Providing the Power supply has adequate capacity, monitored Bell/Sounder O/P’s are capable of driving 2 X 2Amp circuits. Each circuit terminated in a bell/sounder or not, requires a 10K EOL resistor to give a system normal indication if monitoring is enabled in ConfigManager. If either circuit is open or shorted, the panel buzzer will sound and a Bell Fault will be indicated on the Panel. Monitoring is achieved using a small reverse polarity current. For this reason it is necessary to ensure that all alarm devices are fitted with a series diode (1N4004 recommended) and correct polarity is observed for both the output and the bells they are connected to.

Relay outputs marked NO, C and NC are voltage free relay contacts. Outputs marked +ve and -ve are fitted with resistors (10k) to allow the circuit to be monitored. If these outputs are un-used they must be terminated at the terminal block or turned off in ConfigManager.

For all outputs combined, total output current is 2A (if 2A power supply is being used).

Once all the field devices are installed and the wiring has been correctly terminated the FireFinder™ is ready to turn on. Turn the Mains power on, and connect the batteries observing correct polarity. The green power on LED should be illuminated.

OUTPUT RATINGS

<table>
<thead>
<tr>
<th>TB</th>
<th>Function</th>
<th>Type of Output</th>
<th>Fuse</th>
<th>Relay</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Bell 1</td>
<td>2 Amp Fused</td>
<td>F2</td>
<td>RL 1</td>
</tr>
<tr>
<td></td>
<td>Bell 2</td>
<td>2 Amp Fused</td>
<td>F3</td>
<td>RL 1</td>
</tr>
<tr>
<td>4</td>
<td>Plant (Aux) Monitored</td>
<td>1 Amp Fused</td>
<td>F4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Plant (Aux) Non-Monitored</td>
<td>1 Amp Voltage Free Contacts</td>
<td>RL2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Warn Sys (Evac) Monitored</td>
<td>1 Amp Fused</td>
<td>F5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Warn Sys (Evac) Un-Monitored</td>
<td>1 Amp Voltage Free Contacts</td>
<td>RL3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Fault Monitored</td>
<td>1 Amp Fused</td>
<td>F6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fault Non-Monitored</td>
<td>1 Amp Voltage Free Contacts</td>
<td>RL 4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Isolate</td>
<td>1 Amp Voltage Free Contacts</td>
<td>RL6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Alarm</td>
<td>1 Amp Voltage Free Contacts</td>
<td>RL 5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Valve Monitor</td>
<td>1 Amp Voltage Free Contacts</td>
<td>RL 8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Batt Fail (Relay Normally Energised)</td>
<td>1 Amp Voltage Free Contacts</td>
<td>RL 7</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Battery Output</td>
<td>Thermistor Protected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Aux Power Output 1</td>
<td>1 Amp Fused Not Monitored</td>
<td>F7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aux Power Output 1 – EV40 use</td>
<td>3 Amp Fused Not Monitored</td>
<td>F7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aux Power Output 2</td>
<td>1 Amp Fused Not Monitored</td>
<td>F8</td>
<td></td>
</tr>
</tbody>
</table>

Fuse Information

1. All fuses are of the Glass M205 style.
2. F1 is 6.3A
3. Voltage Free contacts are rated at 1A @ 30V

Back EMF Protection

1. Inductive loads fitted to the Brigade PSU Monitor Board MUST be fitted with “Flyback” diodes at the load for back EMF protection.

Transient Protection

1. Recognised transient line protection methodologies at the FACP and the load MUST be considered when connecting any control devices to the outputs be they in close or remote to the FACP.
Figure 11: Brigade / PSU Monitor Board Layout

Note: When connecting to the Brigade PSU Monitor board transient and “Flyback” (Back EMF) protection methodologies MUST be applied.
4.10.1 Battery Connections (TB1)

A FireFinder requires two (2) 12 volt batteries. The batteries should be placed into the bottom right hand side of the cabinet. A red and black lead coming from TB1 on the Brigade Board will be clearly seen in the same area, this lead is to be connected to the batteries red to positive and black to negative once the system is operating on Mains supply. Battery size is dependant on system configuration and can vary from 12 Ahr to over 100 Ahr.

![Battery Connection Diagram](image)

Figure 12: Battery Connection to the Brigade Board

4.10.2 Auxiliary 27 Volt Power (TB2)

Two (2) 1 Amp outputs are available from TB2 terminals 1+ (plus) and 2- (minus) or 3+ and 4- on the Brigade Board. It is important to note these outputs are not monitored.

![Auxiliary Power Diagram](image)

Figure 13: Auxiliary 27v Power Output

4.10.3 Bell / Sounder Monitored Outputs (TB3 & TB5)

Sounders are connected to the Brigade / PSU Monitor Board as shown below. If more sounders are required, the Sounder / Bell Control Board (302-7420) must be used.

![Warning System Control Diagram](image)

Figure 14: Use of Warning System Control for Sounder / Bell Wiring

Figure 15: Use of Warning System Control for Sounder / Bell Wiring
4.10.4 Warning System connections (TB5)

Warning systems such as the EV20 and EV40 are connected to the Brigade / PSU Monitor Board as shown below.

Note: EOL not required in connection as it is fitted at the EV20/EV40 module

Note:

- J, NO C NC are 1A voltage free contacts
- + / - are monitored / fused 1A outputs
- Unused GP's must be terminated in 10K Ohms EOL

Figure 16: EV20 / EV40 Warning System Cabling (Alternate to Sounder / Bell Wiring)

4.10.5 Relay Output Connections (TB6 – TB10)

The relay contacts are connected as shown below.

Note 1:

- 1A monitored output and must be terminated in EOL

Note 2:

- 1A un-monitored Voltage Free Contacts:
 - NO: Normally Open
 - NC: Normally Closed
 - C: Common

Figure 17: Relay Outputs

4.10.6 DBA / MCP & Door Switch Connections (TB11)

If used the DBA / MCP & Door Switch Connections are shown below.

Note:

- Door Switch is Open for Normal Operation and not Monitored

Figure 18: DBA / MCP and Door Switch Wiring

4.10.7 ASE Fault Brigade Box Connection (CN6)

If an ASE Brigade Box is included in a system CN6 is used to convey a fault in the box to the FACP.

Figure 19: ASE Fault Switching
4.11 Main Board (BRD85MBA)

The Main Board is the "heart" of the FACP and carries the devices for interconnecting to all the other Boards, a buzzer for auditory indication, the backlight power supply for the LCD and CPU Reset.

The Main CPU is mounted on this board and connected to it by CN11. The main connection board then provides interfacing to:

- Up to 4 Slave CPU's
- A printer
- A Modem/Graphics Output
- An Expansion Panel
- An Internal serial bus
- An External communication bus.

RV1 – LCD contrast adjust

Supply and Current = 27VDC @ 120mA

Connections

<table>
<thead>
<tr>
<th>CN1</th>
<th>Keyswitch Input</th>
<th>CN12</th>
<th>LCD Graphic</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN2</td>
<td>Expansion Panel</td>
<td>CN13</td>
<td>Slave CPU connection</td>
</tr>
<tr>
<td>CN3</td>
<td>Serial Communication Port</td>
<td>CN14</td>
<td>Slave CPU connection</td>
</tr>
<tr>
<td>CN4</td>
<td>Front Keypad</td>
<td>CN15</td>
<td>Slave CPU connection</td>
</tr>
<tr>
<td>CN5</td>
<td>Printer</td>
<td>CN16</td>
<td>27VDC in</td>
</tr>
<tr>
<td>CN6</td>
<td>Misc</td>
<td>CN17</td>
<td>To LCD Backlight supply</td>
</tr>
<tr>
<td>CN7</td>
<td>Brigade Output</td>
<td>CN18</td>
<td>External Loop Communication</td>
</tr>
<tr>
<td>CN8</td>
<td>Modem [RS232]</td>
<td>CN19</td>
<td>LCD Characters</td>
</tr>
<tr>
<td>CN9</td>
<td>External Buzzer Output</td>
<td>CN20</td>
<td>RS485 Communications Port 1</td>
</tr>
<tr>
<td>CN10</td>
<td>Slave CPU output 1</td>
<td>CN21</td>
<td>RS485 Communications Port 2</td>
</tr>
<tr>
<td>CN11</td>
<td>Main CPU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 20: Main Board Layout with no Main CPU or Slave CPU's
4.12 Front Panel Board (302-690)

The Front Panel Board provides the buttons used to control the FACP as well as all LED indications. All LED’s are surface mounted and the buttons are embedded within the board. The LCD is viewed / protected by a clear Perspex screen.

Connections

| CN1 | To CN4 BRD85MBA |

Figure 21: Front Panel Board
4.13 Main CPU (BRD85CPU)

The Main CPU holds the main central processing unit for the FACP.

BRD85CPU is a 4-layer surface mount board

- The processor (U1) is a Motorola MC68302, running at 20MHz.
- The external data bus is 16 bits wide.
- The board has 256 Kbytes (128K x 16) of EPROM (U2, U3).
- 2Mbytes (1M x 16) of FLASH (U6, U9).
- 2Mbytes (2M x 16) of static RAM (U4, U5, U16, U17).
- U8 is a programmable logic device which implements control signal timing and decoding.
- External address, data and control lines are buffered by U10, U11, U13, U14 and U15.
- U7 is a watchdog control and will reset the processor if there is an error in software execution.
- Two sockets (U2 and U3) are provided for M27C1001 EPROMS. U2 provides the even bytes (D0 to D7) and U3 the odd bytes (D8 to D15)

Connections

| CN2 | To Main Board BRD85MBA CN11 |

Figure 22: The Main CPU Board PCB Layout
4.14 Slave CPU (302-669)

The Slave CPU (Central Processing Unit) provides the interfacing signals and I/O’s required to allow the FACP to connect / communicate to a variety of termination boards.

A single chip micro controller U1 controls all operations of the FACP Slave CPU. This device contains the control program within Read Only Memory (ROM).

Communication to the main system is via an eight bit bi-directional bus (CN1). Integrated circuits U5, U3 and U7 provide buffering and data latches that allow data flow between the Main and Slave CPU’s. The buffers hold one output byte and two input bytes.

CN1 provides the interconnection to the Termination Board. Within CN1 are ten analogue input lines, two input/output lines, two current loop outputs (RS422) and one current loop input (RS422).

All analogue inputs are de-coupled then fed to an eight-bit analogue to digital converter (ADC) U4. The data from the ADC is sent via a serial peripheral interface to the micro controller U1.

The current loop inputs and outputs are used to provide various signals according to the board connected. The signals provided can be serial peripheral interface clock and data signals or full duplex asynchronous data and a timing output. U6 provides the signal multiplexing and buffering required to switch between different functions.

Automatic Termination Board Sensing

A unique feature of the Slave CPU is its ability to automatically sense the type of board it is connected to without the user having to configure the board to suit. Board sensing is done by measuring the voltage on analogue input ten (CN1-10), denoted *Type Voltage*. Each termination board provides a unique predefined voltage. After the Slave CPU has determined the board type the Slave CPU will set the appropriate operating conditions, signal the Main CPU of the installed type and wait for the Main CPU to inform the Slave to begin executing the program.

Connections

| CN1 | To 302-735 or 302-671 or 302-672 or BRD85DLTB-B |

Figure 23: Slave CPU Board
4.15 Conventional Zone Board (302-671)

Under the control of a Slave CPU the Conventional Zone Board provides the interface between it and the external conventional devices. 16 Conventional zones can be connected to TB4 to TB1, with a limit of 32 conventional detectors can be connected to TB4 to TB1.

Connections

CN1	To 27VDC
CN2	To 302-699
TB4 / 5	To Conventional Detectors

Alarm Zone Facilities (AZF) Parameters

Maximum Line Voltage: The maximum line voltage is limited to the system voltage. With a nominal battery voltage of 27V, system voltage and therefore open circuit voltage would be approximately 26.4V.
4.16 Addressable Loop Termination Board (302-735)

The Addressable Loop Termination Board acts as the interface between the external addressable devices and the control and monitoring functions of the FireFinder™. Each board provides terminations for two loops. One slave CPU is required per loop. The 2 Addressable loops are connected to TB1 and TB2.

☞ Note: Apollo devices L2 is +ve (positive), L1 is -ve (negative)

Connect the XP-95 / DISCOVERY loop to the panel as shown below.

AMPAC strongly recommend that the LoopManager test set is used to check that the Apollo loop has been correctly installed and commissioned before connecting it to the FireFinder™.

Loop Parameters

- 126 Apollo Devices
- 250mA Current Max
- S/C protection circuitry activates at approximately 300mA

CONNECTIONS

CN1 / 3	To 302-699
CN2 / 4	27VDC in / out
TB1 / 2	To Addressable loop devices

Figure 25: Addressable Loop Termination Board
4.17 Addressable Loop Termination Board (BRD86DLTB-B)

The Addressable Loop Termination Board acts as the interface between the external addressable devices and the control and monitoring functions of the FireFinder. Each board provides terminations for two loops. One slave CPU is required per loop.

Note: Apollo devices L2 is +ve (positive), L1 is -ve (negative)

Connect the XP-95 / DISCOVERY loop to the panel as shown below.

AMPAC strongly recommend that the LoopManager test set is used to check that the Apollo loop has been correctly installed and commissioned before connecting it to the FireFinder™.

Loop Parameters
- 126 Apollo Devices (i.e. maximum address range)
- 500mA Current Max
- S/C protection circuitry activates at approximately 650mA
- Maximum length 1.2km

Note: To achieve full current, the Loop Trip current in Loop Parameters needs to be set to 300mA (ConfigManager)

CONNECTIONS

<table>
<thead>
<tr>
<th>CN1 / 2</th>
<th>To 302-699</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN3 / 4</td>
<td>27VDC in / out</td>
</tr>
<tr>
<td>TB1 / 2</td>
<td>To Addressable loop devices</td>
</tr>
</tbody>
</table>

Wiring Shown Above is for a XP95 Circuit with one Detector Having LED Monitoring

Figure 26: Addressable Loop Termination Board
Figure 27: The FireFinder™ Control Panel with a 4 Line LCD

FIRFIGHTER FACILITY

- **ALARM** (Red): This LED will flash if any unacknowledged alarms are present on the system. If all alarms have acknowledged it will light steady.

- **FAULT** (Yellow): This LED will light steady if there are any faults on the system, whether they are loop faults, module faults, device faults etc.

- **ISOLATED** (Yellow): This LED will light steady if any detectors, devices or zones in the system have been isolated.

- **EXTERNAL BELL ISOLATE** (Yellow): Pressing this button will isolate any bells connected to the fire panel. If the bell is isolated the LED just above the button will glow steady yellow. Pressing the button again will de-isolate the bell.

- **WARNING SYS ISOLATE** (Yellow): Pressing this button will isolate the FACP output to the Warning System if it is connected to one. Pressing the button again de-isolates the Warning System output. When the Warning System is isolated the LED just above the button will be illuminated steady.

- **PREVIOUS**
 - Pressing this key scrolls the display backwards through the alarms, faults, or isolates.

- **NEXT**
 - Pressing this key scrolls the display forwards through alarms, faults, or isolates.
Pressing this key will acknowledge an alarm currently displayed on the LCD. It will also silence the panel buzzer, which sounds whenever there is an alarm (optional) or fault.

Pressing this key will reset the panel, clearing any acknowledged alarms and taking the LCD display back to its default screen, unless there are any un-cleared faults or isolated devices, these will continue to be displayed.

This key is used to isolate individual or groups of detectors, devices or zones.

Indicators

- **POWER ON** (Green): This LED will light when the mains power is turned on.
- **PRE-ALARM** (Red): This LED will light when a sensor/detector is in the pre-alarm state.
- **AUX ALARM** (Red): This LED will light if the auxiliary alarm output has been activated.
- **WARNING SYS FAULT** (Yellow): When a warning system is connected to the fire panel, this LED will light if the connection to the warning system becomes faulty.
- **SUPPLY FAULT** (Yellow): This LED will light if there is one of the following faults on the power supply.
 - Mains power is not available.
 - The output voltage is too low (less than 24.5V)
 - The output voltage is too high (greater than 28V)
 - The battery is not connected properly.
- **EARTH FAULT** (Yellow): This LED will light if there is an incorrect earth on any of the signal cables of the system.
- **SYSTEM FAULT** (Yellow): This LED will light if the main system CPU is in fault.
- **TEST MODE** (Yellow): This LED will light when the panel is in any of the test modes.

- **DE-ISOLATE** If a detector currently displayed on the LCD has been isolated, pressing this key will de-isolate it.

- **FAULT OUTPUT ISOLATE** (Yellow): Pressing this button will isolate the fault output relay on the brigade board. If the relay is isolated the associated LED will light. Pressing the button again will de-isolate the relay.

- **AUXILIARY FAULT / ISOLATE** (Yellow): Pressing this button or if the FACP is fitted with a door switch and the door is opened the auxiliary output relay on the brigade board will be isolated. If the auxiliary fault / isolate is isolated the associated LED will light steady. Pressing the button again will de-isolate the auxiliary fault / isolate relay.

The auxiliary output line is monitored, should it go into fault, the LED will flash.

- **AIF ACTIVE** (Yellow): Pressing this button will activate the Alarm Investigation Facility. The LED shall turn on.
Press this key followed by a number to select the loop you wish to access e.g. LOOP 4.

After selecting the Loop number press this key to enter the sensor number for the device to be interrogated.

Press this key followed by a number e.g. ZONE 4 to select the required zone.

Press this key after selecting the Zone number or the Loop and Sensor numbers to display the state of the device.

These keys are used to navigate around the panel's menus and enter data. If entering a descriptor, or some other data that contains characters as well as numbers, pressing the keys multiple times will scroll through the available letters written on the button, in sequence e.g. 1, A, B, C

Use this key to access a range of devices e.g. Zone 2 TO 7.

Press the ENTER key when using the panel, to enter data.

The CANCEL ENTRY key is used to delete data in a current field or return to the previously displayed menu.

Used to move the cursor back and forth when entering data in a field.

These keys are used to move between fields when entering data.

Pressing the MENU key will display the main menu on the LCD. Similarly pressing the FUNCTION key will display the function menu on the LCD.

LCD DISPLAY - This screen can be configured with the servicing companies' name and phone number. It also displays the current date, time and that the system is normal (no faults and alarms).

If there are any faults or alarms the LCD will display the device in question, if multiple detectors or zones are not in their normal state, the PREVIOUS and NEXT keys are used to scroll through them.
6 Functions And Menus

6.1 The Default LCD Display

In its normal state the FireFinder™ will display a screen similar to that shown below.

![Figure 28: The Default LCD Display](image)

This screen can be configured with the servicing company's name and phone number via a laptop or modem. The current date, time is set in the Function menu while system status is automatically displayed.

6.2 Accessing Functions and Menus

At Levels 2 and 3, access to the panel Functions are password protected.

A new panel has a pre-programmed password of 2222 for Level 2 and 3333 for Level 3.

Note: Only Authorised Service Technicians / Engineers have the ability to change passwords.

Note: All menus are provided with screen prompts and a “Quick Reference Guide” (see Section 24) guides the operator through the operation of the FACP.

From the DEFAULT DISPLAY, press MENU or FUNCTION. The FUNCTION menu is password protected (actually a pass-number as it can only contain numbers) to prevent unauthorised changes to the panel's configuration.

6.3 Function Menu and Access Levels

Three levels of ACCESS are available via separate passwords so that access to certain facilities can be restricted (such as the ability to enter new passwords).

Level I: has access to MENU only while Password protected Levels 2 and 3 access MENU and FUNCTION as listed below.

Level II: Allows access to:

- Date: Enter the Day, Month and Year (4 digit year).
- Time: Enter the hours and minutes (24 hour mode).
- Day/Night Settings: Enter the Day / Night ON times and Enable - Disable.
- Tests: Walk and loop tests.
- I/O: Sets the functionality of Input / Output devices.
- Access: Password entry to Level 3

Level III: In addition to the Level I & II facilities, Add, Delete, Delete all passwords and Mode (Zone / Sensor) onsite Programming.

Note: The following should be read in conjunction with the Quick Reference Guides in Section 21
7 The Main Menu

The MAIN MENU is accessed by pressing MENU.

![Main Menu](image)

Figure 29: The Main Menu

Numbering System: ① denotes the menu structure number and ① denotes the sub-menu numbering.

Pressing the appropriate number on the keypad while in the MAIN MENU the user can view any:

0 FIRE ALARMS

1 PRE-ALARMS

2 FAULTS; Pressing ② brings up a sub-menu from which a more detailed description of the fault can be displayed. With a Fault present select a field (① to ⑦) to view details of the fault.

<table>
<thead>
<tr>
<th>①</th>
<th>②</th>
<th>③</th>
<th>④</th>
<th>⑤</th>
<th>⑥</th>
<th>⑦</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zones Sensors</td>
<td>Loops</td>
<td>Modules</td>
<td>Comms</td>
<td>Power Supply</td>
<td>Brigade</td>
<td>Test Failures</td>
</tr>
</tbody>
</table>

3 ISOLATES on the system.

If there are no alarms, pre-alarms, faults or isolates, a message, e.g. NO ZONES OR SENSORS IN ALARM will be displayed for 1 to 2 seconds and then the display will return to the Main menu.

7.1 Status Menu

④ Is pressed to access the STATUS MENU.

![Status Menu](image)

Figure 30: The Status Menu

From the STATUS MENU the status of system components and settings can be selected and displayed as listed below. Note that different screens are displayed for a system with and without networking.

Press

0 Loops: Enter the loop number and the LCD will display its status, e.g. normal, type of fault etc.

① Press to print all devices on the loops (Press RESET to stop printing)

② Press to print totals of the loops (Press RESET to stop printing)

1 Modules: Select the type of module, Slave①, P/S②, Brigade③ or External LED Mimic③ and follow the screen prompts to display the status of the selected field.

2 I/O: The LCD will display the status of an input or output in a panel or on a loop.

① Press to display Output status – ① IN A PANEL or ① ON A LOOP

① Press to display Input status - – ① IN A PANEL or ① ON A LOOP
Once the above is selected follow the prompts and enter the:
i) I/O controller number then the input or output on that controller or,
ii) loop, sensor and output number on that device.
The LCD will display if it is configured and if so a description of what that input or output does and its current state.

Network: Note: This option is only available if the system configuration is networked.

3 Is pressed to access NETWORK STATUS.

Network Points:

1. **STATUS:** Press, Select network point e.g. Loop Number
2. **POWER SUPPLY:** Press to display Charger Volts, Battery Detected and Mains OK
3. **BRIGADE:** Press to display Operational or Non-Operational

Remote Slave Modules:

Select from Network Status Remote Slave Modules, then Module number, then **ENTER**

Remote External LED Mimic Modules:

Select from Network Status Remote External LED Mimic Modules, then NP number, then **ENTER** then External LED Mimic number, then **ENTER**

4 Is pressed to access SYSTEM STATUS (If the system configuration is not networked Press 3)

System Status

AValues:

5 Is pressed to access AVALUES. Enter Loop number, then **ENTER**, then Sensor number, then **ENTER**. (If the system configuration is not networked Press 4)
7.2 Testing Menu

Is pressed to access the ALARM, FAULT AND LAMP TESTING MENU.

7.2.1 Alarm Test

- **Important:** Ensure “Alarm” outputs are isolated / inhibited before commencing the test.
- Is pressed to initiate an Alarm Test: Alarm tests either a zone or a sensor on a loop or a range of zones or sensors on a loop if the TO key is used, e.g., ZONE 1 TO 3.

This test will force a zone/s or sensor/s to go into the Alarm state or a conventional zone to a simulated Alarm condition. Pressing ENTER initiates the test. Pressing RESET clears the test.

7.2.2 Fault Test

- Is pressed to initiate a Fault Test: Fault tests either a zone or a sensor on a loop or a range of zones or sensors on a loop in the same way as for the Alarm test above.

This test will force a sensor to go into the Fault state or a conventional zone to a simulated Fault condition. Pressing ENTER initiates the test.

7.2.3 Lamp Test

- Is pressed to initiate a Lamp Test: The test will sequentially flash the LED’s on the front panel and illuminate the various segments on the LCD display.

Figure 36: The Testing Menu

Figure 37: Alarm Test Selection Screens

Figure 38: Fault Test Selection Screens
8 **Main Functions**

LEVEL II MAIN FUNCTIONS
0: DATE 1: TIME 2: DAYNIGHT SETTINGS 3: LOGS
4: TESTS 5: I/O 6: ACCESS

LEVEL III MAIN FUNCTIONS
0: DATE 1: TIME 2: DAYNIGHT SETTINGS 3: LOGS
4: TESTS 5: I/O 6: PASSWORDS

SELECT NO:

8.1 **Setting the Function Date Facility**

Select the **FUNCTION**. A prompt will ask for a **PASSWORD** if the control panel is not currently active. Using the keypad key in the Level 2 or 3 PASSWORD and press **ENTER**.

Press

① To select the set DATE SCREEN. The prompt will ask for the date to be entered in this format, **DD/MM/YYYY** (e.g. 01/01/2011), key in and press **ENTER**. The screen will then return to the **MAIN FUNCTIONS MENU**.

8.2 **Setting the Function Time Facility**

Press

① Then in the following format key in the time, **HH:MM** (e.g. 16:00) using the 24 hour mode. Press **ENTER** and the screen will return to the **MAIN FUNCTIONS MENU**.

8.3 **Setting the Function Daynight Facility**

Press

② The DAY-NIGHT SETTINGS screen will appear. Time entry is the same as setting the “Time” facility.

Press

① To enter the DAY ON time then **ENTER** and,

① To enter the NIGHT ON time then **ENTER**.

② To ENABLE / DISABLE then **ENTER**.

For this Function to have control it must be **ENABLED**, press ② Re-pressing ② will toggle to **DISABLE**.

8.4 **Function Logs Facility**

Press

③ And the **EVENT LOG MENU** will be displayed.

The **LOGS MENU** allows the operator to select and view the events that have occurred of all;

Press: ① ALARM, ① FAULT, ② ISOLATE, ③ SYSTEM

Figure 39: The Level II & III Functions Menu

Figure 40: Logs Function Menu & Fault Log Selected

Once the type of log is selected, e.g. FAULT above, each entry can be viewed by stepping through them using the **NEXT** and **PREVIOUS** keys.
The type of log, number and totals logged, date and time of the ALARM, FAULT, ISOLATE, SYSTEM or I/O as well as device information will be displayed. The SYSTEM screen displays events and watchdog activity. From these screens the operator can select two other facilities, they are:

Press

① PRINT ENTRY will print out the displayed information if a printer is installed, or

① SHOW OPTIONS allows the operator to select how the Logs are viewed.

Press

① to VIEW BY ENTRY NUMBER or ① to VIEW BY DATE. In each case the screen will ask for the appropriate information (ENTRY NUMBER or DATE) to be entered before the selected option will be displayed.

NOTE: it is possible to scroll through the alarms by using the PREVIOUS and NEXT keys.

8.5 The Function Test Facility

Press

④ TESTS: prompts the operator to select either the WALK or LOOP test.

Press

③ WALK TEST; the operator will be prompted to select either ZONE or SENSOR test.

Press

③ ZONE WALK TEST MENU;

This screen requires the operator to select a Zone or number of Zones to be tested, that is enter the Zone number press ENTER or enter the Zone number press TO then the next highest Zone number to be tested EG. 2 TO 7 then ENTER.

The TEST MODE LED will be illuminated for the duration of the test and the test will run until the operator RESETS the system or the test times out [Time Out = 15 minutes + 3 to 5 seconds].

Press

③ SENSOR WALK TEST MENU

This screen requires the operator to select a Zone and then a Sensor or (number of Sensors using the TO key) to be tested then pressing ENTER to start the test.

The TEST MODE LED will be illuminated for the duration of the test and the test will run until the operator RESETS the system or the test times out [Time Out = 15 minutes + 3 to 5 seconds].

Press

③ LOOP TEST requires the operator to select a LOOP for DIAGNOSTIC TESTING

Entering the LOOP number and pressing ENTER will initiate the DIAGNOSTIC TEST.

NOTE: The LED’s on the Brigade Board will indicate which leg is being tested.

The tests displayed are;

- TESTING SIDE A IDENTIFYING DEVICES on SIDE A, and
- TESTING SIDE B IDENTIFYING DEVICES on SIDE B.

Once the testing is completed the final screen will display the number of devices found and tested on the LOOP and a Reset is requested to return the system to normal.

NOTE: If the data is not entered within 2 minutes the screen will time out and return to the DEFAULT SCREEN.
8.6 Function Manual I/O Control

Press

5 To display the Manual I/O Control menu

![Manual I/O Control Menu](image)

Figure 41: The Manual I/O Control Menu

Manual I/O control allows the technician to turn ON or Off inputs and outputs off a device to facilitate testing or isolation of plant during maintenance. Removal of manual control returns control to the panel.

Press

1 Input Selected:

Press

IN A PANEL: Enter the I/O Controller number then the input number. This will display the description for the input and its current state; you can then turn the input ON or OFF or remove manual control.

ON A LOOP: Enter the loop number, the sensor number and the input number. This will display the description for the input and its current state; you can then turn the input ON or OFF or remove manual control.

Remove All Manual Input Control: Will remove all manual input control.

Output Selected: Same sequences as above for inputs but substitute outputs for inputs.

Remove All Manual Control Selected: Globally removes all manual control.

8.7 Function Access (Level II) / Passwords (Level III)

Press

6 While in the Main Functions menu and enter the Level III Password if in Access Level II or, if in Access Level III to display the Password Menu.

![Password Menu](image)

Figure 42: The Level II Password Entry & Level III Password Menu Screens

Add Password: Enter the new password, then press ENTER. The password is always a 4 digit number.

Delete Password: Enter the password that you want to delete, and then press ENTER.

Delete All Passwords: This asks you to confirm that you want to delete all the passwords. Press ENTER then ENTER again.

Zone / Sensor Mode: This sets the mode in which Alarms, Faults, Pre-alarms and Isolates status information will be displayed. “Zone” is the default setting.
8.7.1 Forgotten Passwords

Follow the following process if a password has been forgotten or misplaced;

- Entering 9999 into the password field;
- Take note of the 4 digit password number displayed on the screen; then
- Contact the AMPAC head office and quote the above number;

A temporary password will be issued and a new password can then be programmed into the FACP.

Note: The temporary password becomes invalid if 9999 is entered again or if the panel is re-powered after 9999 has been entered.
8.8 Function Programming

Press

7 To display the Level III Programming Menu.

Figure 43: Programming Menu

8.8.1 Conventional Zone Programming

Press

ZONE:

Key in the zone number and enter or change the description (DESC) by pressing buttons to move the flashing underline or cursor. The numeric buttons multiple times to access characters while at the same time using

EDIT Zx DESC AND TYPE SETTING
DESC < ZONE >
TYPE <
ALPHA KEYS ARE ACTIVE

Figure 44: Zone Description & Type Programming

EDIT Z CONFIGURATION
CONFIG LATCHING
use < or > to change alarm setting

Figure 45: Brigade Options

Press to move to the TYPE field or edit the information.

Press to move between fields use the reciprocal button

By going through all the fields a second screen can also be accessed to show the Output options.

Press to step through these fields.

The keys are used to set the Y/N field, that is the selected Zone that will activate the Brigade Options ALRM, BELL etc and Config.

EDIT Z I/O GROUPS
GROUP 1: GROUP 2: GROUP 3:
GROUP 4: GROUP 5: GROUP 6:
Enter GROUP NO:

Figure 46: Zone Configuration Latching / Unlatching

Use or to change the setting

Configuration settings are Latching, Non-Latching, AVF, Self Reset (0 to 99 seconds). After setting the Configuration the ZONE I/O GROUPS are programmed.

ENTER Zx BRIGADE OPTIONS AND CONFIG
ALRM: Y/N BELL: Y/N AUX: Y/N SPK: Y/N AIF: Y/N
ALARM LED: Y/N CONFIG: LATCHING
use < or > to change setting

Figure 47: Zone I/O Groups
After scrolling through the groups and entering what I/O GROUPS will be turned on by what module/s or device/s in a zone/s the operator is prompted to press ENTER to confirm the entries and / or changes.

8.8.2 Device Programming

Press

1. DEVICE:

Screen: use these keys to EDIT and move through wording &
These keys to MOVE between fields i.e.: DESC & TYPE and next parameter
Enter the Loop and Sensor number then scroll through the following screens.
Press or Press

① to EDIT or ① to DELETE

1. EDIT LxSx DESCRIPTION AND TYPE STRING. Edit then. Press

e.g.: DESC Loop 1 Sensor 1

TYPE SMOKE

2. Allocate / Edit the Sensor to a Zone and set the device type then. Press

e.g.: XP95 Photo, XP95 Heat etc-

3. Set /Edit and display the Output Configurations or options then. Press

e.g.: Latching, AVF, Non-latching etc

4. Set / Edits and enables / disables the day/night settings then. Press

5. Allocates / Edits the Loop and Sensors Groups.

After scrolling through the groups a prompt tells the operator to press ENTER to confirm the changes.

8.8.3 Input Programming

Press

INPUT:

By following the screen prompts as above Edit or Delete an INPUT in a panel or a loop.

Screen: PROGRAM MENU SELECTING AN INPUT

<table>
<thead>
<tr>
<th>① IN A PANEL</th>
<th>① ON A LOOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O MODULE</td>
<td>LOOP</td>
</tr>
<tr>
<td>Select I/O MODULE NO. then ENTER</td>
<td>Select LOOP NO. then ENTER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select I/P NO then ENTER</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EDIT / DELETE DESC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select INPUT NO. then ENTER key</td>
</tr>
</tbody>
</table>

| ALPHA KEYS ARE ACTIVE | EDIT Lx Sx I/Px DESC STRING DESC |

8.8.4 Output Programming

Press

③ OUTPUT:

By following the screen prompts as above Add, Edit or Delete an output in a panel or on a loop.
8.8.5 Manual Call Point (MCP)

Press MCP:

The operator will be prompted to enter the NODE Number, that is the Node or panel on which the MCP is mounted.

8.8.6 Sub Address

Press Sub Address lets the operator EDIT or DELETE the address of an IO device on a Loop.

Note: an input is the only function that can bring up an alarm.

Select the LOOP, then ENTER SENSOR, then ENTER then the SUBADDRESS (e.g. 1, 2 or 3 for 3IO device), or press 0 to EDIT or press 1 to DELETE.

Editing

If editing, the screen will display the Loop number, Sensor number and sub address followed by DESC < TYPE < INPUT > and advise the Alpha keys are active. Once edited and pressing ENTER the message UPDATE TO MEMORY message will be displayed.

ENTER should not be pressed if the CONFIGURATION is to be edited, instead press to go to the next screen where the output is configured to be latching (general alarm requiring a Reset to be returned to normal), NON-LATCHING (hence self resetting) or FAULT which clears when the fault is cleared.

8.8.7 Watchdog

This Function provides a counter to record any re-initialisation of the processor. If due to a software failure the panel is automatically reset then the counter will increment by 1 The maximum count is 99 after which the counter resets to 00. Pressing will reset the counter. When the panel is commissioned this counter MUST be reset to 0 as must be the Events Logs.

8.8.8 Self Learn

Self Learn is enabled / disabled in the EEPROM programming. If enabled FireFinder™ has the ability to detect extra or missing modules or devices, (that is devices or modules that have been added or removed) or there has been a change of the type of module or device.

Note: If a change does occur the FACP will take 30seconds to register the event on the LCD and illuminate the FAULT LED.

8.8.9 Extra Devices Detected

The FireFinder™ LCD will indicate extra devices have been detected by displaying the screen below and the FAULT LED will be illuminated.

![Image](FIREFINDER.png)

Figure 48: Resolving Extra Modules and Devices

To resolve select FUNCTION, enter PASSWORD, press and the screen below will appear

![Image](PROGRAMMING.png)

Figure 49: Added Module or Device
Select 0 (Selecting 1 presents the PROGRAMMING MENU) then 0 or 1 (as seen below) then ENTER to ADD the module or device to the configuration, or skip to resolve the changes manually in the Programming Menu.

0: ADD EXTRA MODULES 1: ADD EXTRA DEVICES
2: DEVICE TYPE MISMATCH 3: MODE MISMATCH
SELECT NO:

Figure 50: Resolving Extra Modules or Devices

8.8.10 Mismatch Detected

If a mismatch is detected the Normal Default Screen will change to that shown below. Go to the Programming Menu and select either 0 Resolve Extra Modules and Devices then 2 (Device Type) or 3 (Mode) to resolve the mismatch, OR On Site Programming to resolve manually.

Loop 1 Sensor 1
L1 S6 Z1 STAT: TYPE MISMATCH
ZONE FAULTS 1 OF 1

Figure 51: Resolving a Mismatch
9 **Incoming Fire Alarm Signal**

- Will operate the red common LED fire indicator
- Will display location of fire alarm origin on the LCD
- Will activate external alarm.
- Will activate the internal FACP buzzer.
- Will activate any ancillary equipment so programmed.
- Will abort any test in progress.

The LCD will always display the first fire alarm signal received in the top section of the LCD. The lower section of the LCD will also permanently display the most recent zone in alarm. Other essential fire alarm information and fault or disablement information is available via the PREVIOUS / and NEXT keys. After 30 seconds if no key is pressed the top section of the display will revert to displaying the first zone in alarm.

![Figure 52: LCD Screen with 5 Devices in Alarm](image)

Note: The displayed information changes to that associated with the device as the PREVIOUS / NEXT push buttons are pressed. If there is a fault condition or a fire alarm and the buzzer is sounding, press the ACKNOWLEDGE button to stop it sounding.
10 Accessing a Loop, Sensor or Zone

LOOP OR SENSOR
- From the default display, press LOOP.
- Enter the loop number you wish to interrogate then press SENSOR.
- Press the button for the sensor number.
- Press the TO button if you wish to access a range of sensors on the loop,
- Press the DISPLAY button if you wish to display the status of a sensor,
- Press the ISOLATE button if you wish to isolate a sensor then ACKNOWLEDGE
- Press the DE-ISOLATE button to de-isolate a sensor.

![Diagram showing steps for isolating single and/or multiple devices]

ZONE
- From the default display, press ZONE.
- Press the button for the zone number.
- Press the TO button if you wish to access a range of zones,
- Press the DISPLAY button if you wish to display the status of a zone,
- Press the ISOLATE button if you wish to isolate a zone then ACKNOWLEDGE
- Press the DE-ISOLATE button to de-isolate a sensor.
11 Expanding the FACP with Compatible FireFinder Boards

11.1 Ancillary Services

The FACP has been designed such that detectors and/or call points, in addition to giving an alarm and calling the fire brigade, will close or open circuits of ancillary services by means of relays or similar devices.

Examples of these services are:

- Actuation of fixed fire-extinguishing systems;
- Closing of windows, smoke and fire doors,
- Control of ventilating systems;
- Covering of tanks containing flammable liquids and controlling their valves to isolate the contents from direct contact with the fire, etc.

To facilitate safe maintenance of these services an option is available that allows for the isolation and visual indication of the disablement of ancillary services that does not affect the normal operation of the fire alarm system.

To ensure power to the fire alarm system is not prejudiced in any way, power for the ancillary services must be included in the calculation of the power supply and battery capacity.
11.2 Compatible FireFinder Boards

<table>
<thead>
<tr>
<th>Module / Board</th>
<th>Part No</th>
<th>Fast Fit Kit Item No</th>
<th>Max No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slave CPU</td>
<td>302-669</td>
<td>159-0007</td>
<td>8 per Controller # 1</td>
</tr>
<tr>
<td>Conventional Zone Board</td>
<td>302-671</td>
<td>159-0005</td>
<td>8 per Controller</td>
</tr>
<tr>
<td>Apollo Loop Termination Board</td>
<td>302-735</td>
<td>159-0003</td>
<td>8 per Controller</td>
</tr>
<tr>
<td>16/16 Input / Output Board</td>
<td>302-672</td>
<td>SP1X: 159-0113</td>
<td>8 per Slave CPU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SP8X: 159-0005</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SP16X: 159-0009</td>
<td></td>
</tr>
<tr>
<td>8 Way Relay Board</td>
<td>302-676</td>
<td>SP1X: 159-0013</td>
<td>16 per Slave CPU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SP8X: 159-0013</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPX16X: 159-0015</td>
<td></td>
</tr>
<tr>
<td>16 Way Input Board</td>
<td>302-677</td>
<td>SP1X: 159-0114</td>
<td>8 per Slave CPU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SP8X: 159-0010</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SP16X: 159-0011</td>
<td></td>
</tr>
<tr>
<td>Serial Relay Board</td>
<td>302-732</td>
<td>SP1X: 159-0079</td>
<td>16 per Controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SP8X: 159-0072</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SP16X: 159-0072</td>
<td></td>
</tr>
<tr>
<td>Fire Fan Module / Fire Fan Termination Board</td>
<td>BRD25FCB</td>
<td>4310-0021</td>
<td>15 per Controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BRD25FTB</td>
<td></td>
</tr>
<tr>
<td>General Indicator Card (32 Zone Alarm)</td>
<td>BRD85GIBB</td>
<td>SP1X: 159-0106</td>
<td>* 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SP8X: 159-0089</td>
<td>* Config dependant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SP16X: 159-0120</td>
<td></td>
</tr>
<tr>
<td>General Indicator Card 16/16 Zone Alarm & Fault</td>
<td>BRD85GIBB</td>
<td>SP1X: 159-0107</td>
<td>* 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SP8X: 159-0108</td>
<td>* Config dependant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SP16X: 159-0121</td>
<td></td>
</tr>
<tr>
<td>General Indicator Card Amber LED's</td>
<td>BRD85GIBB</td>
<td>SP1X: 159-0123</td>
<td>* 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SP8X &16: 159-0124</td>
<td>* Config dependant</td>
</tr>
<tr>
<td>Printer</td>
<td>OEM1447</td>
<td>SP1X: 159-0084</td>
<td>1 per Controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SP8X: 159-0110</td>
<td></td>
</tr>
<tr>
<td>Sounder/Bell Controller Board</td>
<td>302-7420</td>
<td>SP1X & SP8X: 159-0071</td>
<td>8 per Controller</td>
</tr>
<tr>
<td>8 x 1A per circuit</td>
<td></td>
<td>302-7421</td>
<td></td>
</tr>
<tr>
<td>Sounder/Bell Controller Board</td>
<td>4 x Volt free, 4 x 1Amp</td>
<td>302-7421</td>
<td>8 per Controller</td>
</tr>
<tr>
<td>Agent Release Module / Agent Termination Board</td>
<td>BRD25ARB-A</td>
<td>SP1X: 159-0099</td>
<td>8 per Controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SP8X: 159-0100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SP16X: 159-0117</td>
<td></td>
</tr>
<tr>
<td>Local Control Station (IP40)</td>
<td>BRD25ARB-B</td>
<td>SP8X: 159-0112</td>
<td>4 per Termination Brd</td>
</tr>
<tr>
<td>Expansion Board</td>
<td>302-688</td>
<td>SP8X: 159-0112</td>
<td>1 per Controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SP16X: 159-0022</td>
<td></td>
</tr>
<tr>
<td>Expansion Controller</td>
<td>SP16X: 159-0077</td>
<td>Rack: 159-0067</td>
<td>3 per Node</td>
</tr>
<tr>
<td>Occupant Warning System EV20</td>
<td>Factory Fit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupant Warning System EV40, EV60 and EV120</td>
<td>Factory Fit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occupant Warning System EV3000</td>
<td>Factory Fit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brigade Devices</td>
<td>Factory Fit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compatible Networking Devices

<table>
<thead>
<tr>
<th>Expansion Controller</th>
<th>SP16X: 159-0077</th>
<th>Rack: 159-0067</th>
<th>3 per Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Interface Board</td>
<td>BRD85NIC</td>
<td>SP1: 159-0053</td>
<td>1 per Controller</td>
</tr>
<tr>
<td></td>
<td>SP8X: 159-116</td>
<td>SP16X: 159-0053</td>
<td></td>
</tr>
<tr>
<td>High Level Interface Expander</td>
<td>BRD43SPB</td>
<td>4310-0080</td>
<td>3 per Controller</td>
</tr>
<tr>
<td>Communication Extender Brd</td>
<td>BRD82LTB</td>
<td></td>
<td>1 per Controller</td>
</tr>
</tbody>
</table>

Note: #1: This comprises 4 on the Main Controller and 4 on the Expansion Board.

Note: #2: Depends on the configuration and the number of Panels in the System.
11.3 16/16 Input / Output Board (302-672)

The Input / Output Board is connected to the slave CPU via CN1 and acts as the interface between the Slave CPU, 8 Way Relay Board and the 16 Way Opto Input Board. Dependant on the panel configuration a maximum of 8 Input / Output boards can be daisy chained together.

Figure 54: 16 / 16 Input / Output Board

11.4 8 Way Relay Board (302-6760/1)

Relay Outputs: Each 8 Way Relay Board 302-676 is fitted with either eight 1A, RL1 to 8, (302-6760) or 5A, RL9 to 16, (302-6761) relays with voltage free contacts which can be used for control (e.g. releasing doors) or monitoring (e.g. driving indicators, door open / closed) purposes.

Figure 55: 8 Way Relay Board with 1A Relays Fitted
11.5 16 Way Input Board (302-677)

Opto-Inputs: Up to 16 inputs can be connected to the 16 Way Input Board. These inputs are required to be voltage free contacts as shown below.

![16 Way Input Board Diagram](image)

Figure 56: 16 Way Input Board

11.6 Serial Relay Board (302-732)

Relay Outputs: Each Serial Relay Board communicates with the Main Controller via the Serial Bus and is fitted with eight 1A relays fitted with voltage free contacts. A maximum of 8 boards can be daisy chained together per Controller.

![Serial Relay Board Diagram](image)

Figure 57: Serial Relay Board
11.7 Fire Fan Module (BRD25FCB)

The Fire Fan Module has four (4) separate fan controls each having an On, Auto and Off function switch and a set of three (3) monitoring LED's. The LED's indicate the status of the equipment e.g. Run, Fault or Stop. The two (2) arrow head keys are used to step up and / or down through the three (3) conditions. A slip in label can also be inserted into the hinged cover for identification purposes.

The "Plant Trip" Reset is used to locally restart plant and equipment that has been automatically shut down because the FACP has initiated an alarm once that alarm has been cleared.

Quiescent Current: 13.5mA

Figure 58: Fire Fan Module Front Panel

Figure 59: Fire Fan Module PCB Layout

11.8 Fan Termination Board (BRD25FTB)

The Fan Termination Board interfaces between the Fire Fan Module and the plant/equipment it controls via the 24 volt 250mA Start, Stop, current limited, relay outputs and monitor inputs. Programmable monitoring of the field equipment is achieved using 0 volts as an input level to indicate run, fault and stop conditions of that equipment. Monitoring is programmed in the Function Menu for a 3, 4 or 5 Wire Start / Stop, Run, Fault, Stop & Common functions. The inputs are protected by way of resettable transors and resistive / capacitive networks.

Connectors

<table>
<thead>
<tr>
<th>Connector</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN3 & CN4</td>
<td>27VDC in and out on boards mounted external to the FACP</td>
</tr>
<tr>
<td>CN5</td>
<td>Factory programming only and may not be available on all boards</td>
</tr>
<tr>
<td>TB2</td>
<td>Connect the fan control and monitoring wiring to the board.</td>
</tr>
</tbody>
</table>

Figure 60: Fan Termination Board Layout and Typical I/O Wiring
11.9 Zone & General Indicator Card (BRD85GIBB)

The General Indicator Card (BRD85GIBB) comes in two versions each consisting of a front clip on surround, decal, mounting frame, PCB and is clipped into the front panel of the FACP to provide visual LED indication of; Zones in alarm x 32 [red], or Zones in alarm x 16 [red] / Zones in fault x 16 [yellow].

Each Indicator can be identified by way of slip in labels.

Figure 61: 32 Zone Alarm General Indicator Card

Figure 62: Bottom Overlay

Figure 63: Top Overlay

Note #1: DO NOT USE excessive force to remove any component once it is clipped into position.

Note #2: If the indicator becomes illuminated it remains so until “Reset” is pressed.

Note #3: The indicators are tested by the Lamp Test control.

Figure 64: 16 Zone Alarm / Fault Card Decal & PCB Layout
11.10 Switch and Indicator Card (BRD25GIB – B)

This Card can effectively perform 2 different functions. Firstly the indicators monitor the first 8 inputs of the 16 Way Input Termination Board while secondly the switches can be programmed to manually operate a specific relay in the system.

Quiescent Current: 3.6mA

Figure 65: Front Panel Card Layout

Figure 66: Front Panel Card PCB Layout
11.11 8 Way Sounder Monitor Board (302-7420/1)

The 8 way Sounder Monitor Board allow a larger number of bells and sounders to be connected to the System.

The 302-742 is built in two versions:

1. 302-7420: All outputs are monitored and provide 1 Amp per circuit.
2. 302-7421: The first 4 circuits are Voltage free contacts, the second 4 are as per the 302-7420.

Wiring to the Monitored sounder outputs is as per the 302-6730.

The Sounder/ Bell monitor board connects to the serial peripheral interface (SPI) bus. This is the same bus that connects to the Brigade Output Board and a maximum of 8 boards can be daisy chained together.

Note: Output current is dependent on the capacity of the Power Supply.
11.12 Printer

Specifications
- Printing method: directed impact dot matrix
- Interface: 8 bit parallel interface
- Printing mechanism: 4/6 pin shuttle
- Interface port: 26 PIN flat plug

11.12.1 Indicators and Buttons

The front panel has an LED indicator and two buttons SEL (SELECT), LF (LINE FEED).

![Printer Front Panel Layout](image_url)

Indicator
When the 3 colour LED indicator is illuminated;
- Red indicates the printer is offline with no paper;
- Green indicates the printer is On Line;
- Yellow indicates the printer is On Line with no paper; or if it is
- Off indicates the printer is Off Line or the printer is busy.

SEL Button

a) On Line / Off Line State
The printer enters the On Line state automatically when power is applied or on exiting from the Self-Test mode. (LED is green).

Press the SEL button, the LED is turned off and the printer goes Off Line.

Press the SEL button again, the LED turns on and the printer is On Line again.

Note: The printer will not receipt data when the printer is off line.

b) Pausing the Printer While It Is Printing.
Press the SEL button while the printer is printing, the printer will pause and enter the Off Line mode after it finishes printing the row it was currently printing. The printer will continue to print when the SEL button is pressed again.

c) Enter the HEX-DUMP mode
Remove power from the printer, press the SEL button, then reconnect the printer to the power supply. The printer will enter the HEX-DUMP mode. In this mode any programs sent from the host CPU will be printed out in Hexadecimal.

LF Button
While the printer is Off Line press and hold the LF button, paper feed will be initiated. Release the LF button and the paper feed will be cancelled.
Self-Test Mode

With power applied (green LED illuminated) push the SEL button. This will turn off the LED. Press and hold in the LF button, then press the SEL button again and the printer will enter the Self Test mode. Self-test will print out all the valid characters in the character sets.

Exit the Self-Test Mode:

After printing out the complete Self-Test list the printer will exit the mode automatically; or

Press the SEL button and the printer will immediately exit the Self-Test mode.

11.12.2 Maintenance

Installing the Ribbon Cassette

The printer has a factory loaded ink ribbon cassette. Remove the power from the printer.

Unlock the front cover by pushing down on the tab at the top of the front panel.

Push the mechanism release button in the top right corner to release the print head.

To remove the ribbon cassette gently pull out the left end then the right.

Replace the cassette by putting the right end of the new cassette slightly onto the drive axle then gentle pushing the left end into the clips.

The left end of the cassette can only be pressed in after the right end has been correctly seated onto the drive axle. If alignment is difficult it may be necessary to turn the knob on the cassette slightly.

Now check that the ribbon is tight across the face of the cassette and is on the inside of the cassette and across the paper. Turn the knob clockwise again if the ribbon is on the outside of the cassette.

Ribbon Replacement;

Push back the mechanism head and lock it, close the cover of the printer and reconnect the power.

Loading the Paper Roll

Disconnect the power, unlock and open the front cover.

Push down on the mechanism release button in the top right corner to release the head.

Lift the mechanism as shown below.
Take out the empty paper roll and roller.

Put the new paper roll onto the paper roller and replace as shown above.

Connect to the power supply.

Press the SEL button to take the printer Off Line, (LED is off).

Press the LF button, (paper feed).

Feed the edge of the paper into the mechanism and allow it to feed through. If difficulties are encountered while feeding the paper thru the mechanism, cut the leading edge of the paper into a triangle as shown above. This makes it easier to feed the paper thru.

Once it established the paper is feeding through the head mechanism correctly press the SEL button to stop the paper feed.

Return the printer head to its original position.

Pushing on the affixed label PUSH the head mechanism back into position.

Close the front cover.

Note #1: Press only on the **PUSH** label to return the head mechanism back into position.

Note #2: The above instructions are graphically displayed on the inside of the front cover.
11.12.3 Printer Connections and Jumpering

Mounted on the back of the printer mechanism is the PCB that carries the:
- Connectors for interconnection to the Main Board,
- Jumper links required to set the programmed print modes; and
- Printer 5 volt DC Power Supply.

Jumper Settings

<table>
<thead>
<tr>
<th>Designator</th>
<th>Jumper State</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>NOT Inserted</td>
<td>Selects ESC Commands</td>
</tr>
<tr>
<td></td>
<td>Inserted</td>
<td>Selects UP Commands</td>
</tr>
<tr>
<td>J2 Set as</td>
<td>NOT Inserted</td>
<td>Selects ASCII Character Printing Mode</td>
</tr>
<tr>
<td>Default</td>
<td>Inserted</td>
<td>Selects Chinese Character Printing Mode</td>
</tr>
<tr>
<td>J3</td>
<td>NOT Inserted</td>
<td>Select Printing by Contrary Direction</td>
</tr>
<tr>
<td></td>
<td>Inserted</td>
<td>Select printing in the Normal Direction</td>
</tr>
<tr>
<td>J7 Set as</td>
<td>Insert the Shorting Clip Between Pins 1 and 2</td>
<td>Selects the 12 X 12 Font</td>
</tr>
<tr>
<td>Default</td>
<td>Insert the Shorting Clip Between Pin 2 and 3</td>
<td>Selects the 15 X 16 Font</td>
</tr>
</tbody>
</table>

11.12.4 Printer 5 Volt Power Supply (BRD42PVCB1)

27 volts DC is taken from Brigade / PSU Monitor Board and fed to CN1 of the 5volt Printer Power Supply Board. It is this board that drops this voltage from 27volts to 5volts for use by the Printer. Mounted to rear of printer.
11.13 Agent Release Control

Agent Release control consists of a Agent Release Module, Termination Board and an optional Local Control Station.

Operation

Introduction

The Agent Release Module and Termination Board communicate with the FACP via the RS485 multi-drop bus.

The Local Control Station communicates only with the Termination Board via a separate RS485 bus. Up to 4 Local Control Stations can be connected to one termination board.

Agent discharge operates in two modes – automatic and manual. The manual mode is selected by pressing the Inhibit switch on any Local Control Station. To indicate the system is in manual the Inhibit LED will be illuminated. Pressing Inhibit again will toggle or return the mode to automatic and extinguish the Inhibit LED.

The “Agent Discharged” Pressure Switch (PSW) is wired to the PSW input on the Termination Board and is used to confirm that the agent has been released. The circuitry involved in this process can be configured to accept a normally open contact, normally closed contact, normally open mechanically operated (manual) or is ignored (not fitted) and is selected via FACP on-site programming. If the mechanical (manually operated) option is selected the module monitors the pressure switch input and provides notification the agent has been released manually, initiates an alarm and illuminates the “Agent Discharged “ indicator.

Manual Mode

When the system is in manual mode, then;

- The Local Control Station Inhibit indicator is lit at the FACP and all Local Control Station's.
- The buzzer at all Local Control Stations will sound until the inhibit button is released.
- The System Inoperative output is turned on.
- The Automatic discharge sequences are prevented from starting.
- If an automatic discharge sequence was underway and the inhibit switch is activated (switched to manual mode) the discharge sequence is aborted and the sequence is reset. This means the Stage 1 and Stage 2 outputs are switched off.

To manually discharge the agent the “ Lock Off Valve “ must be open and the Manual Release switch on the Local Control Station pressed. The manual discharge sequence is;

- Manual Activation indicator is lit on the FACP and Local Control Station.
- The FACP activates its brigade alarm output.
- Stage 1 outputs are switched to +24VDC. (FIRE ALARM sign illuminated, aural alarm sounds)
- Stage 2 outputs are switched to +24VDC. (FIRE ALARM, EVACUATE & DO NOT ENTER signs illuminated, aural alarm sounds).
- The optional pre-release start delay is activated (Selected via FACP on-site programming); time out and an ON Interlock signal will then operate the selected release circuitry.
- The Agent Discharged LED on the Agent Release Module and Local Control Station will illuminate when the Pressure Switch input on the Termination Board is activated.
- Activate gas-fired output.

Auto Mode

Automatic discharge is when one or two zones going into alarm initiate the agent discharge sequence.

Single Zone Activation, the following discharge sequence is executed;

- Automatic Activation LED is illuminated on the Agent Release Module and Local Control Station.
Stage 1 outputs are switched to +24VDC. (FIRE ALARM sign illuminated, aural alarm sounds).

Stage 2 outputs are switched to +24VDC. (FIRE ALARM, EVACUATE & DO NOT ENTER signs illuminated, aural alarm sounds).

Optional pre-release delay is started (Selected via FACP on-site programming).

The delay times out and if the Interlock signal is ON, the selected circuit will activate.

The Pressure Switch field input on the Termination Board is activated and the Agent Discharge LED on the Agent Release Module and Local Control Station will be illuminated.

Activate gas-fired output.

Dual Zone Activation, if the first zone goes into alarm the following steps are initiated:

- The automatic activation LED on the Agent Release Module and Local Control Station will flash.
- Stage 1 outputs are switch to –24VDC. [FIRE ALARM sign illuminated, aural alarm sounds].

When the second zone goes into alarm, then the following steps occur:

- Automatic activation LED goes steady.
- Stage 1 outputs are switched to +24VDC. (FIRE ALARM & EVACUATE signs illuminated, aural alarm sounds)
- Stage 2 outputs are switched to +24VDC. (DO NOT ENTER sign illuminated)
- Optional pre-release delay commences (Selected via FACP on-site programming).
- The delay times out and if the Interlock signal is on the selected circuit will activate.
- The Pressure Switch field input on the Termination Board is activated and the Agent discharge LED on the Agent Release Module and Local Control Station will be illuminated.
- Activate gas-fired relay output.

Service Inhibit Switch

The service inhibit switch is situated on the Agent Release Module when activated causes the following:

- Electrically isolates the activation circuitry from the agent release device.
- Operates the System Inoperative output.

Note: The service switch is **NOT** overridden by a manual discharge.

Lock-Off Valve

When the manual lock-off valve is operated:

- The agent is blocked from reaching the release valve.
- The lock-off valve inhibit indicator LED’s on the Agent Release Module and Local Control Station are illuminated.
- The system inoperative output operates.

Fault Monitoring

Fault conditions are initiated by:

- The Pressure Switch monitoring circuit.
- The Low Pressure Switch monitoring circuit.
- The Lock-off Valve monitoring circuit.
- Activation circuitry.
- Stage 1 outputs. (Aural & visual discharge alarms).
- Stage 2 outputs. (Aural & visual discharge alarms).
A Zone Fault.

A Fault on the interlock input.

A Fault with a LCS.

Note #1: The common fault indicator on the Agent Release Module and Local Control Station is illuminated for any Fault condition.

Note #2: For a pressure switch fault, low pressure switch fault, lock-off valve fault, stage 1 output fault, stage 2 output fault and interlock fault, the FACP will signal the brigade.

Note #3: When there is a fault in the activation circuit or in the trigger zones, in addition to the above, the system inoperative output is operated.

Note #4: The FACP fault buzzer will sound for all faults.

Note #5: The FACP will report the type of fault on the LCD.

Isolation

If a trigger zone is isolated at the FACP the trigger zone isolated indicator at the Agent Release Module and Local Control Station is illuminated, and the system inoperative output is operated.

System Inoperative Output

The system inoperative output is switched to +24VDC under the following conditions:

- Operation of the Service Switch.
- A Fault in the selected trigger circuit.
- Operation of the Lock-off valve.
- Operation of the Inhibit at an Local Control Station.
- A Fault in any of the activation zones.
- If any of the activation zones are isolated.

Manual Mechanical Release of the Agent

With agent release systems, a manual mechanical means can be provided to release the agent. If the pressure switch is activated (indicating that the agent has been released), and the agent release module has not activated the selected activation circuit, then the following will occur:

- Stage 1 output is switched to +24VDC and stage 1 relay is output closed
- Stage 2 output is switched to +24VDC and stage 2 relay output is closed
- Light the agent release led on the ACC and LCS's
- Activate gas-fired relay output

Monitoring of the Pressure Switch

Due to the requirements of Manual Mechanical Release of the Agent, the pressure switch input conveys two pieces of information:

When the pressure switch input is active, it signals that the agent has been released. The release can be as a result of the agent release module or due to a manual mechanical release.

When the pressure switch is not active, it signals that there is a full bottle of agent available to be discharged.

In order for the agent release module to respond to a manual mechanical release, the pressure switch must have been previously not active, to signify that a full bottle of agent is available.
11.13.1 Agent Release Module (BRD25ARB-A)

The Agent Release Module controls and monitors all the requirements for agent release and carries the slide in label for identification of the agent and application area.

Quiescent Current: 8mA

Figure 73: Exploded View of Module and Front Panel Layout

Controlled Access

![Figure showing Controlled Access](image)

It is a requirement that control be secured from unauthorised use. A keyswitch has therefore been included in the control process.

The FCP goes into service mode when the keyswitch is switched to SERVICE INHIBIT. This results in the selected agent activation circuit being electrically isolated and a Common Isolate condition being indicated at the FACP. This condition can also confirmed through the Status Menu. To remove the key it is necessary for the switch to be in the **OFF** position.

Pressing Select toggles the selection of either the Main or Reserve release agent. Selection is indicated by the Main and Reserve Agent LED's.

![Figure showing Agent Release Module PCB Layout](image)

If activated the Manual Release will commence the discharge sequence of the selected agent and an alarm condition is initiated. Progress of the release can be monitored through the Status Menu. To prevent accidental operation this switch has a hinged clear plastic cover that has to be raised to access the switch.

Agent Release Module PCB Layout

![Agent Release Module PCB Layout](image)

The PCB is fitted with two 2 x RJ45 connectors CN6 & 7 for power (27VDC) and communications (RS485) for communications between the Agent Release Module and the FACP Main Control Board.

Quiescent Current: 28.5mA

Note: If the keyswitch is not used CN2 will carry a link so as to enable the panel.
11.13.2 Local Control Station (BRD25ARB-B)

The Local Control Station (LCS) is supplied fitted into an IP40 rated enclosure and has the same indicators and Manual Release switch as the Agent Release Module within the Fire Alarm Control Panel (FACP) but no Agent Select button or Service Inhibit keyswitch.

The Comms line is RS485 and is cabled to the Agent Termination Board.

The Interlock is a monitored input with 10KΩ EOL. This input is used to determine if air conditioning dampers and doors are closed but can be defaulted to the “ON” condition by terminating the input with a 2KΩ EOL.

Double action switching is achieved by way of protective lift up covers seen here and manual operation of the MCP or Inhibit switch.

To ensure correct operation and prevent accidental release of the agent these covers should not be disabled for any reason.

Figure 75: Local Control Station

Figure 76: Local Control Station Layout

LCS Operation & Controls
Lifting the cover and pressing the MCP starts the manual agent release sequence. This two action safety feature prevents any accidental operation of the control and should not be disabled.

Agent Release / LCS Indicators

There are 12 indicators on both the Agent Release Module and Local Control Station. They are;

- **MANUAL ACTIVATION** (Red) Illuminated when a manual release sequence has commenced. A Manual release sequence can only be started by activating the manual release at the FACP or LCS. The indicator is extinguished by activating RESET on the FACP.

- **AUTOMATIC ACTIVATION** (Red) Illuminated when an automatic release sequence has commenced. This occurs when the selected zone(s) on the FACP have gone into alarm. For dual zones, the indicator should flash when the first zone goes into alarm, and steady when the second zone goes into alarm. Indicator is extinguished by activating RESET on the FACP.

- **AGENT DISCHARGED** (Blue) Illuminated when the pressure switch indicates the agent has been released. If there is no pressure switch fitted, the indicator shall be illuminated immediately the agent release signal is activated (Selected via FACP on-site programming – refer to relevant FACP Manual) The indicator is extinguished by activating RESET on the FACP.

- **LOCK OFF VALVE INHIBITED** (Yellow) Illuminated when the lock-off valve has been activated. The indicator is extinguished by activating the RESET control on the FACP.

- **STAGE 2 TIMER RUNNING** (Yellow) Illuminated when the pre-discharge delay timer is running. The indicator is extinguished by activating the RESET control on the FACP.

- **AGENT CIRCUIT FAULT** (Yellow) Illuminated when there is a fault on the monitored Main or Reserve activation circuits e.g. S/C or O/C.

- **AGENT LOW PRESSURE** (Yellow) Illuminated when the low pressure switch is activated. This indicates a leakage at the agent cylinder. The low pressure switch is a separate switch.

- **TRIGGER ZONE ISOLATED** (Yellow) Illuminated when any of the programmed trigger zones on the FACP are isolated.

- **COMMON FAULT** (Yellow) Illuminated under the following fault conditions;
 - pressure switch monitoring fault,
 - low pressure switch monitoring fault,
 - lock-off valve monitoring fault,
 - activation circuit fault,
 - stage 1 output fault,
 - stage 2 output fault,
 - LCS fault (missing or extra),
 - trigger zone(s) fault,
 - low agent pressure and interlock fault.

- **INTERLOCK** (Yellow) Illuminated when the interlock input (e.g. from dampers, doors etc) is off during the discharge sequence – meaning the dampers, doors etc are not closed as they should be or a fault exists. The “Interlock” is overridden after 10 seconds and the agent is released

Note: The Interlock is a Monitored Input and can be defaulted to the ON position by terminating the input (TB2 7 & 8) into a 2KΩ resistor.
INITIAL AGENT: (Yellow) Illuminated when the “Initial” Agent is selected.

RESERVE AGENT: (Yellow) Illuminated when the “Reserve” Agent is selected.

Local Control Panel Inhibit

TO INHIBIT AUTOMATIC AGENT RELEASE
LIFT COVER AND PRESS BUTTON

The agent inhibit switch has an internal lamp fitted with yellow lens. Illuminated when the inhibit is activated at the FACP or any of the LCS’s.

Buzzer (located at the FACP)
The Buzzer sounds;

- Under all fault conditions and can be silenced by using the appropriate FACP buzzer silence control.
- When the LCS Inhibit control is activated – after 8 hours – treated as an isolate condition.
- When the service inhibit is activated - after 8 hours – treated as an isolate condition

Connecting the LCS to the Agent Termination Board

ISOLATE THE AGENT

Check the FACP is functioning correctly then power down
Connect the LCS to the Agent Termination Board within the Fire Alarm Control Panel and Interlock as shown below. If applicable take into consideration warning signs at this point
Insert the link LK1 onto the last LCS in the chain. If un-used place the link onto one of the LK1 pins
Set the address of the LCS,
Power up the system and program the FACP for the addition of the LCS
Check the FACP is functioning correctly and test
De-isolate the Agent

Caution - TO PREVENT ACCIDENTAL AGENT RELEASE DO NOT DE-ISOLATE THE AGENT UNDER ANY CIRCUMSTANCES UNTIL THE SYSTEM AS A WHOLE IS FUNCTIONING CORRECTLY

Figure 77: PCB Layout & Cabling Details
11.13.3 Agent Release Termination Board (BRD25ATB)

The Agent Termination Board interfaces to:

1. The FACP via CN1, CN2 continuing the RS485 communications bus if required. LK1 is inserted if this is the last backpan board on the bus.
2. LCS’s (up to 4) via TB1. LK1 is inserted in the last board in the RS485 Bus
 - Pressure Switch (PSW) agent released
 - Low Pressure Switch (LPSW) agent storage cylinder pressure has dropped to a predetermined level; and
 - Interlock, the manual lock-off valve has been operated.
4. Gas Fired: Output via RL2 N/O contacts rated at 1A @ 24VDC wired to TB3. Used to indicate to other monitoring devices the agent has been released.
5. System Inoperative: via RL1 N/O contacts rated at 1A @ 24VDC wired to TB4. Used to warn by way of signage / audible alarm and/or monitoring that the system is inoperative.
6. Stage 1: Output; initiates the visual and audible Fire Alarm and Evacuate warnings.
 - Monitored; via RL4 C/O contacts wired to TB5 1 & 2 (EOL required 10KΩ)
 - Un-monitored; via RL5 N/O contacts wired to TB5 3 & 4.
7. Stage 2: output; initiates the visual and audible Fire Alarm and Do No Enter warnings
 - Monitored; via RL6 C/O contacts wired to TB6 1 &2; (EOL required is 10KΩ)
 - Un-monitored; via RL3 N/O contacts wired to TB6 3 & 4
8. Release: Main actuating circuit, monitored (10KΩ EOL required) via TB7 1 & 2 (2A current limited),
9. Release: Reserve actuating circuit, monitored (10KΩ EOL required) via TB7 3 & 4 (2A current limited)

Metron Igniters (max of 10 – a series 2watt 18Ω resister must be added to the circuit)
Solenoid valve (max current of 2 amps & 27VDC)
11.13.4 Interface Wiring

Monitored Inputs TB2 1 & 2

Solenoid & Metron

This input relies on N/O or N/C relay contacts used in conjunction with 22KΩ EOL and 4K7Ω series resistors. The type of agent release mechanism and contacts used has to be set in the Programming Menu for the input to function as per the manufacturer’s specifications and be in accordance with the relevant Standard.

Note: The PSW, LPSW & the Interlock Mechanisms are all mounted onto the top of the cylinder containing the Agent.

LPSW & Lock

These inputs are also monitored and should be wired as shown above.

As can be seen from above the; Gas Fired Output can be wired to any interfacing or 1A monitoring circuit that requires a closed relay contact to indicate a change of state. This could be a relay or a solid state device.

System Inoperative Outputs 27V @ 1A to supply interfacing, signage and aural alarms to indicate the system has been taken out of service or has developed a fault.

Stage 1, Stage 2

The above circuitry applies to both TB5 (Stage 1) and TB6 (Stage 2) Termination Board Relays.

Figure 79: Solenoid, Metron PSW, LPSW and “LOCK” Wiring

Figure 80: Gas Fired Wiring

Figure 81: System Inoperative Wiring

Figure 82: Stage 1 and 2 Wiring
11.14 Warning Signs

Description

The warning signs are driven by a 2 wire system and may be configured for single or dual stage operation.

An on-board buzzer provides an audible warning which may be disabled by removing JP3.

External evacuation devices, e.g. sounders may be connected to TB3 of the input termination board. An external mute push-button (N/O contacts) may also be connected to Term 3 on the warning sign PCB to enable the user to silence the internal buzzer and evacuation device. Inserting JP4 disables this function.

Enclosures

The IP50 is a metal enclosure. The facia surround is fitted by removing the screw on the left hand side of the enclosure and pulling it away to the left. The facia sign is fitted in place and the tabs bent over to hold it in place. Two holes in the backpan of the chassis allow for mounting.

The IP65 ABS enclosure has 10 screws, tightened evenly but not over tightened, hold the facia in place. 4 holes in the backpan allow for mounting.

Specifications:

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Voltage</td>
<td>27VDC</td>
</tr>
<tr>
<td>Power Consumption Continuous</td>
<td>At 24VDC 55mA Stage 1</td>
</tr>
<tr>
<td></td>
<td>At 24VDC 140mA Stage 2 (100mA Muted)</td>
</tr>
<tr>
<td>IP Ratings</td>
<td>IP50 190mm (H) x 315mm (W) x 73mm (D)</td>
</tr>
<tr>
<td></td>
<td>IP65 200mm (H) x 295mm (W) x 65mm (D)</td>
</tr>
<tr>
<td>Environmental</td>
<td>-10°C to +55°C Dry heat</td>
</tr>
<tr>
<td></td>
<td>+40°C @ 0 to 93% Relative Humidity</td>
</tr>
</tbody>
</table>

Installation

- Remove the backpan from the enclosure to ensure it is not damaged while mounting the enclosure.
- Bring the cabling into the enclosure by removing the knockouts most appropriate for the installation.
- Mount the enclosure, remount the back pan, set the configuration and then cable as per the following diagram.
- ENSURE THE AGENT IS ISOLATED and test from the Agent Release Module.

Cabling

Term 3 (Buzzer Mute)

BUZZER MUTE Normally Open (N/O) Push Button Switch (Optional)

Input

<table>
<thead>
<tr>
<th>Term 4 (Single pair polarity reversing / 2 Stage Input)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1 0V – 24VDC</td>
</tr>
<tr>
<td>Stage 2 24VDC – 0V</td>
</tr>
</tbody>
</table>
Configuration – Jumper Settings

<table>
<thead>
<tr>
<th>JP 1 (Continuous / Flashing)</th>
<th>JP 2 (Single / Dual Stage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 Continuous
 LED's Permanently ON</td>
<td>1-2 Single Stage
 Full sign on for Stage 1 & 2</td>
</tr>
<tr>
<td>2-3 Flashing
 (DEFAULT)
 LED's flashing at 1.5Hz</td>
<td>2-3 Dual Stage
 (DEFAULT)
 Half sign on for Stage 1
 Full sign on for Stage 2</td>
</tr>
<tr>
<td>JP 3 (Enable Buzzer)</td>
<td>JP 4 (Disable External Mute)</td>
</tr>
<tr>
<td>1-2 ENABLE BUZZER
 (DEFAULT)
 Buzzer activates for both Stage 1 & 2</td>
<td>1-2 EXTERNAL MUTE
 (DEFAULT)
 Disable external mute for internal Buzzer</td>
</tr>
<tr>
<td>JP 5 (not used)</td>
<td></td>
</tr>
<tr>
<td>1-2 Enable External Evacuation</td>
<td></td>
</tr>
<tr>
<td>External evacuation device will activate on Stage 1 & 2</td>
<td></td>
</tr>
<tr>
<td>DEVICE (DEFAULT)</td>
<td>with the tone dependent on the input polarity</td>
</tr>
</tbody>
</table>

WARNING SIGN TERMINATION BRD

Figure 83: Warning Sign PCB Layout and Cabling

Figure 84: 2 Wire Cabling from the Agent Termination Board to the Warning Sign/s & Evacuation Device/s
11.15 Occupant Warning Systems

The EV20, EV40, EV60 and EV120 are compact single zone occupant warning devices that when triggered produce Alert and Evacuation signals to meet the requirements of AS1670.1.

EV20

At the heart of an EV20 single zone occupant warning system is a microprocessor that generates the alert and evacuation signals, controls timing and the input / output.

If an FACP warning system input is received when the rotary switch is in the AUTO position the EV20 will begin to output the “Alert” signal for a duration determined by the setting of the 4 way DIL switch SW1. The set duration is termed the changeover timeout and ranges from 0 seconds to a maximum of 300 seconds. If the time out is set to 0 seconds then the alert signal is bypassed and the evacuation signal commences immediately. The operator can manually stop the sequence by turning the rotary switch to the ISOLATE position.

IC4 performs the task of an audio amplifier with TX1 providing the impedance matching to a 100 volt speaker line. The alert and evacuation signal output Stages are set by adjusting RV1 and RV2 respectively.

Short or open circuit speaker faults are detected by the fault monitoring circuitry and will result in the illumination of the FAULT indicator mounted on the front panel control module.

Public Address

A microphone and pre-amplifier (Order Code 222-0007) is used to provide the public address capabilities.

EV20 Verbal EVAC only Messaging

An optional verbal messaging PCB (Order Code 222-0026) is available and is mounted directly onto the main board.

EV40

At the heart of an EV40 single zone occupant warning system is a microprocessor that generates the alert and evacuation signals, controls timing and the input / output.

If an FACP warning system input is received when the rotary switch is in the AUTO position the EV40 will begin to output the “Alert” signal for a duration determined by the setting of the 4 way DIL switch. The set duration is termed the changeover timeout and ranges from 0 seconds to a maximum of 540 seconds. If the time out is set to 0 seconds then the alert signal is bypassed and the evacuation signal commences immediately. The operator can manually stop the signal sequence by turning the rotary switch to the ISOLATE position.

The Amplifier provides 40 watts of audio output at 8 ohms which feeds TX1 to provide the impedance matching to a 100 volt speaker line. The “ALERT” and “EVAC” Stage controls adjust the output Stage of each set of signals.

Short or open circuit speaker faults are detected by the fault monitoring circuitry and will result in the illumination of the FAULT indicator mounted on the front panel control module and “SPEAKER SHORT” (red) or “SPEAKER OPEN” (yellow) LED’s on the main board.

Public Address

A microphone (Order Code 294-0001) is used to provide the public address capabilities.

EV40 Verbal Messaging

An optional verbal messaging PCB (Order Code 222-0013) is available and is mounted directly onto the main board.

EV20 / 40 Verbal Message

Control Module

When the control switch is in;

AUTOMATIC - occupant warning signals and if applicable verbal messaging is under the control of the microprocessor and outputted to the speaker system when it receives a “warning system” signal from the FACP.

ISOLATE – the occupant warning system is isolated from the FACP “warning system” signal and even if the signal is present there will be no output.

PUBLIC ADDRESS – the occupant warning system can be used locally as a PA system.

Note: Tones are isolated while in PA

MANUAL EVACUATION – the occupant warning signal/s will be transmitted over the system.

Indicators

- **LINE FAULT** (Yellow) In the event of an open or short circuit speaker line the LINE FAULT indicator (yellow) will be illuminated

- **ISOLATED** (Yellow) the LED will be illuminated (yellow) when the warning system is isolated

EV20 Cabling

![Figure 85: Typical EV20 & PA Wiring](image)

Note: “WARNING SYSTEM” is a monitored O/P. The EOL is on board the EV20 and is effectively made to be O/C (at TB1) during an EV20 fault condition. This produces the fault condition at the FACP.
Figure 86: EV20 Wiring to Control Module, FACP Cabling and Time Out Table
NOTE 1: "WARNING SYSTEM" IS A MONITORED FACP O/P. THE EOL IS ONBOARD THE EV40 AND IS EFFECTIVELY MADE TO BE O/C (AT TB1) DURING AN EV40 FAULT CONDITION. THIS PRODUCES THE FAULT INDICATION AT THE FACP.

NOTE 2: IF NO SPEAKER MONITORING IS REQUIRED PLACE A 22K RESISTOR ACROSS TB4 TERMINALS 1 & 2 TO DISABLE OPEN CIRCUIT LED.

Figure 87: Typical EV40 Wiring to Control Module and FACP

Figure 88: EV40 Time Out Table

Jumper settings
- **PEV:** - PA + Evac – must be inserted when a selector switch is connected.
- **PAU:** - PA in Auto – if inserted allows MIC 1 input (hand held microphone) to be used in “Auto” (with no FACP alarm) and paging in “Evac” mode.
- **PA2 CONT:** - PA2 Control – if inserted allows the PA2 input to also switch the Control Output.
- **M2 1milli volt:** - if inserted enables a 1mV microphone input for MIC 2, not inserted enables the input for 100mV line level (background music etc.)
11.16 EV60 / 120

The EV60 & 120 are essentially an EV20 MPU and driver but with 60 and 120 watt output amplifiers powered from a Current Limit Fuse Board.

![Figure 89: EV60 and EV120](image)

11.17 EV3000

HLIE Interface Operation

The EV3000 Emergency Warning and Intercommunications System (EWIS) main central processing unit communicates via a RS485 bus with a High Level Interface Expander in an FACP or Serial Parallel Board.

A fault in the EV3000 will be indicated by the Master Control Panel which in turn initiates, via the Common Fault Relay Board and Brigade PSU Monitor Board, a Warning System Fault indication on the FACP.

![Figure 90: HLI & Common Fault Cabling To & From the FACP and EV3000](image)
12 Brigade Devices

12.1 ASE (Vic Metro) Brigade Box

The ASE Brigade Box interfaces the Victorian Fire Brigade into the FireFinder SP series of FACP’s.

![ASE Brigade Box Diagram]

Figure 91: ASE FACP Internal Wiring

12.2 Brigade Box (Deltec WA, SA, TAS, QLD)

The Brigade Box interfaces the Fire Brigade to the FireFinder SP series of FACP’s.

![Brigade Box Diagram]

Figure 92: Brigade Box FACP Internal Wiring
13 Expanding the System through Networking

Expanding the system can be achieved in various ways and requires the use of boards specifically designed for communications purposes and boards that actually expand the system.

13.1 Communications: Network Interface Card (BRD85NIC)

The Network Interface Board provides the RS485 communication buses via CN18 on the Main Controller (Loop Comms) to allow the networking of multiple panels in different combinations, e.g. from Data Gathering Panels (DGP) to Peer to Peer panels. Fitted to the NIC is the CPU IO Controller (BRD85CPU) with NIC software to control the in out flow of communications.

![Network Interface Board Layout](image)

Figure 93: Network Interface Board Layout

When FACP’s are connected to each other they form a “NETWORK”. Individual FACP’s in the Network are referred to as NODES. The Network as defined by the limitations of the installation can consist of a number of Nodes, the number of Nodes being dependant on the configuration of each Node. Typically an entire Network could consist of 60 Slave CPU’s connected to loops, zones and or input / output devices spread over several nodes. The Network is Peer to Peer with the entire system configuration being stored at each Node. The system is then programmed so that information can be made invisible to particular Nodes or visible to all Nodes. Likewise system commands can be global or restricted to specific parts of the network.

The entire system can be programmed from Node 1 in the Network and is connected as a data loop which provides redundancy should there be a single cabling fault.

IMPORTANT

While it is important that proper documentation is kept and maintained for any installation it becomes even more important as a system develops into the larger types described above.
Figure 94: General Wiring of Two FACP's on a network

Note: Maximum distances between panels = 1.2km if greater distances are required a rs422 Repeater (black box 352a or 352a-l) is to be fitted every 1.2km after the first 1.2km. Cable to be used = Belden 8132 or 9842 two pair shielded.
13.2 Communications Extender Board (BRD82LTB)

The Communications Extender Board is mounted inside the FACP and provides protected RS485 communications and 27VDC to the SmartTerminal Termination Board/s and LCD/s and LED Mimics.

Figure 95: Communications Extender Board PCB Layout

Figure 96: Connecting the SmartTerminal to the FACP
13.3 High Level Interface Expander (BRD43SPB)

Hardware

The High Level Interface Expander consists of a serial port under the control of a microcontroller. Communications between the FACP and this board is via the RS485 control bus with each board having a dedicated link and selectable 4 bit address.

Software

The port supports the following protocols:

- **HLI** – Functionality matches the FireFinder (8510/8610) panel which supports text or positive ack protocol. Configurable attributes are: logical output, physical output, alarm output, pre-alarm output, fault output, disable output and descriptors.
- **SmartGraphics interface** - Serial Port or RS485 Port
- **MODBUS interface** - Serial Port or RS485 Port
- **EV3000** - RS485 port

Figure 97: High Level Interface Expander PCB Layout

Figure 98: Software Block Diagram
Figure 99: Example of Networking Configurations

Note: Maximum distances between panels = 1.2km if greater distances are required a rs422 Repeater (black box 352a or 352a-f) is to be fitted every 1.2km after the first 1.2km. Cable to be used = Belden 8132 or 9842 two pair shielded.
13.4 Expansion Board (302-688)

The Expansion Connection Board is used to increase the capacity of the controller from 4 Slave CPU's to 8. Connection from the Controller to the Expansion Board, which must be mounted within 200mm of the Controller, is made via a 20 way flat cable Slave CPU number 5 is an integral part of the Expansion Board, only Slave CPU's 6, 7 and 8 are plug ins.

Connections

<table>
<thead>
<tr>
<th>CN1</th>
<th>To Main Connection Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN2</td>
<td>Slave CPU 2</td>
</tr>
<tr>
<td>CN3</td>
<td>Slave CPU 3</td>
</tr>
<tr>
<td>CN4</td>
<td>Slave CPU 4</td>
</tr>
<tr>
<td>CN5</td>
<td>On board Slave CPU</td>
</tr>
</tbody>
</table>

Slave CPU's 6, 7, & 8 all mount onto the Expansion Board in the same way as they do to the Main Controller.

Figure 100: Board Overlay

13.5 Expansion Controller (159-0077)

An Expansion Controller (Fast Fit Kit Number 159-0077) can be described as a Main Controller without a Front Panel. A maximum of 3 can be introduced into any one Node that is into any one FACP and require a Network Interface Cards in order to communicate with the Main Board / Controller.

Connecting Controllers together (Networking within the same cabinet) expands the system beyond 8 Slave CPU’s, that is the Main Board plus an Expansion Board.

Networking in this way enables the connection of up to 4 Expansion Controllers within the same FACP cabinet. This requires the use of NIC’s but offers the added advantage that the RS422 communication bus is internal and all Controllers are physically and logically located at the same Node. It is now possible to Network up to 32 Slave CPU’s in one cabinet with each Slave CPU connected to an Addressable Loop, 16 Conventional Zone Board or Digital I/O Board. With this configuration only one Controller has a Front Panel Board.

Once the system has been expanded to this degree it is obviously quite large and some form of indication at a point remote from the FACP may become necessary. This is achieved with the use of a Communications Extender Board for SmartTerminal’s and/or LED Mimic. Adding a High Level Interface Expander to the Communications Extender Board allows for the addition of HLI, EV3000, Remote Serial Printer or SmartGraphics facilities.
14 **SmartTerminal**

SmartTerminal connects to the **FireFinder** Fire Alarm Control Panel (FACP) via the RS485 multidrop communication port. Generally it is designed to be used anywhere where the status of the FACP is required to be monitored by local personnel and limited control is required.

- Have front panel controls that allow the resetting of alarms and activation/silencing of alarm devices. Enabling operational access to the controls is via a key-switch;
- Reports events from devices that are accessible to the host FACP. For example if the host FACP is configured with global access then the connected **SmartTerminal** reports events from all devices. If the host FACP is configured as local then the connected **SmartTerminal** reports events from devices that are directly connected to the host FACP.

SmartTerminal complies with AS4428 /NZS4512 and designed for use with the **FireFinder** series of FACP’s.

- 4 line by 40 character LCD with backlight and navigation keys ▲ ▼ keys allow the SmartTerminal to be used for FACP operation and interrogation. Note the backlight is only energised when alarms are present, a key has been pressed or controls enable key switch is enabled
- Buzzer and system Reset.
- System expansion capabilities / options:
- A wide range of secure user functions. This includes the ability to isolate / de-isolate a large number of system functions.
- Flush or surface mountable enclosure.
- Controls have tactile and audible feedback of operation.
- All terminals cater for 2.5mm cables.

14.1 **SmartTerminal Controls and Indicators**

All controls, except for the Enable / Disable keyswitch, are of a momentary push button style.

![SmartTerminal Front Panel Layout](image-url)

Figure 101: SmartTerminal Front Panel Layout
Controls & Indicators

External Bell Isolate

(Yellow) Illuminated when the External Bell output has been isolated either at the SmartTerminal or the FACP.

- **External Bell Isolate**
 - Press to isolate the External Bell output (associated LED illuminated).
 - Press again to re-enable the output (associated LED extinguished).
 - **Active at access level 2.**

Warning System Isolate

(Yellow) Illuminated when the Warning System output has been isolated either at the SmartTerminal or the FACP.

- **Warning System Isolate**
 - Press to isolate the Warning System output (associated LED illuminated).
 - Press again to re-enable the output (associated LED extinguished).
 - **Active at access level 2 only.**

Previous

Primary Function

Press to display the previously displayed LCD screen

Secondary Function

Set SmartTerminal address – A – (minus) decrement number

Active at access level 1 and 2

Next

Primary Function

Press to display the next displayed LCD entry

Secondary Function

Set SmartTerminal address – A + (plus) increment number

Active at access level 1 and 2
General fire alarm indicator. The LED will flash until all alarms have been acknowledged. Once Acknowledged the LED will remain steady until all alarms have been cleared by Reset.

Acknowledge

Acknowledges the alarm condition of the sensor or conventional zone that is currently displayed on the LCD.

If the key is held down for 3 seconds a lamp test is initiated. The Lamp Test illuminates all indicators, segments on the LCD and momentarily sounds the buzzer.

Active at access level 1 and 2.

Indicator

- **(Red)**

 - **General fire alarm indicator.**
 - The LED will flash until all alarms have been acknowledged. Once Acknowledged the LED will remain steady until all alarms have been cleared by Reset.

Fault indicator

- **(Yellow)**

 - **Indicator**
 - Is illuminated when there is one or more faults on the system. Faults can be:
 - Devices – missing, out of calibration, wrong type, reporting an internal error
 - Loops – short circuit or open circuit
 - Monitored inputs and outputs on loop devices
 - Sounders – missing, wrong type or reporting an internal error
 - Modules within the panel – missing, wrong type or hardware error
 - Main and secondary supplies

Reset

- Resets the acknowledged alarm condition of the sensor or conventional zone currently displayed on the LCD.

Active at access level 2 only.

Isolate indicator

- **(Yellow)**

 - **Indicator**
 - Is illuminated when one or more device/s or conventional zones are isolated either at the **SmartTerminal** or the FACP.

Isolate

- Isolates (or de-isolates) the sensor or conventional zone currently displayed on the LCD.

Active at access level 2 only.
Key Switch Controls enable key switch.

Access level 1 (OFF) By Default. Only the Acknowledge, previous and next front panel controls are operative. All other controls operate in access level two.

Access level 2 (ON) is entered when the key-switch is in the ENABLED position.

Buzzer

The Buzzer is activated under the following conditions and can be silenced by pressing the Acknowledge (ACK) control locally or on the FACP.

- Alarm condition
- Devices – missing, out of calibration, wrong type, reporting an internal error
- Loops – short circuit or open circuit
- Monitored inputs and outputs on loop devices are in fault
- Sounders – missing, wrong type or reporting an internal error
- Modules within the panel – missing, wrong type or hardware error
- Main and / or secondary power supply fault

POWER (Green) Illuminated to show the presence of power. Flashes when mains has failed

POWER FAULT (Yellow) Illuminated when there is a fault with the power supply. Fault can be no mains, high charger voltage, low battery voltage or missing/damaged battery

SYSTEM FAULT (Yellow) Illuminated when the FACP is unable to provide mandatory functions. Indicator is latched, until cleared by reset

EARTH FAULT (Yellow) Illuminated when there is an earth fault detected on the panel

EXTERNAL BELL FAULT (Yellow) Illuminated if the External Bell output is in fault

WARNING SYSTEM FAULT (Yellow) Illuminated is the Warning System output is in fault

ACF FAULT / ISOLATED (Yellow) Illuminated steady if the ACF output has been disabled and flashes if the ACF output is in fault (open or short circuit). Isolate has priority over fault

ASE FAULT (Yellow) Illuminated when the ASE output is in fault

TEST (Yellow) Illuminated when the FACP is in the test mode. Possible tests are alarm, fault, walk, lamp and loop.

AIF ACTIVE (Yellow) Illuminated when the AIF facility is active at the FACP

PRE ALARM (Red) Illuminated when one or more devices are in the pre-alarm condition and not disabled

DAY / NIGHT ACTIVE (Yellow) Illuminated when day / night facility has been enabled on the FACP

Programmable 1 to 4 – For future use
14.2 LCD Screen Format

There are 3 events that can be reported and displayed by SmartTerminal. The types of event are:
- Alarm
- Faults and
- Isolates.

The types of events are only associated with sensors and detectors hence faults associated with modules, loops O/C – S/C, power supplies and so forth are not reported on the LCD.

The SmartTerminal has front panel indicators for each type of event. When SmartTerminal is configured not to report a type of event and that event type is present (and the corresponding front panel indicator is illuminated on the SmartTerminal), then a standard information screen is displayed on the LCD stating the system is not normal and the operator should see the FACP.

Alarm: If configured the screen format for reporting loop / sensor / zone fire condition is:

```
Device descriptor (up to 33 characters)  Type Descriptor (up to 6 characters)
Loop address and zone number(Lxx Syyy.zz Zwww) current device status
Date and Time of occurrence (DD/MM/YYYY HH:MM:SS)
Alarm sequence number ( Device Alarms nnn of nnn)
```

Fault: If configured the screen format for reporting loop / sensor / zone fault condition is:

```
Device descriptor (up to 33 characters)  Type Descriptor (up to 6 characters)
Loop address and zone number(Lxx Syyy.zz Zwww) current device status
Fault sequence number ( Device Fault nnn of nnn)
```

Note: The fault types only relate to devices.

In the event of a loss of communications, for a period of greater than 15 seconds the SmartTerminal will default to the No Communications screen. The format for this screen is:

```
No Communication
```

Device Isolate / Disables: If configured the screen format for reporting loop / sensor / zone disable condition is:

```
Device descriptor (up to 33 characters)  Type Descriptor (up to 6 characters)
Loop address and zone number(Lxx Syyy.zz Zwww) current device status
Isolate / Disable sequence number ( Device Fault nnn of nnn)
```

Pre-alarm: If configured the screen format for reporting loop / sensor / zone Pre-alarm condition is:

```
Loop address and zone number(Lxx Syyy.zz Zwww)
Pre-alarm descriptor (up to 15 characters)
Pre-alarm sequence number ( Device Pre-alarms nnn of nnn)
```
Normal / Default: The format for reporting that everything is normal is:

Current Date and Time (DD/MM/YYYY HH:MM)
System Status

This screen is only displayed when there are no alarms, fault or disables on the panel.

The default screen is only displayed when there are no device alarms, device faults or device disables present on the system. The highest priority current system status will be displayed and can be one of the following listed in order of highest to lowest priority:

“SYSTEM ALARM”
“SYSTEM PRE-ALARM”
“SYSTEM FAULT”
“SYSTEM ISOLATE”
“SYSTEM NORMAL”

Config: The Config screen displays the following

VX.X (This is the code software version number)
Address

Adjusting Address: (see section 14.4)

A - A +: adjusts the address 1 to 30, 30 being the maximum number of SmartTerminal's that can be connected to the FACP, (default is 255 which is not a valid address).

The function keys perform the following;
A – Press “PREVIOUS”
A + press “NEXT”

Adjusting Contrast:

C - C+: decreases [-] and increases [+] the LCD contrast level.

The function keys perform the following;
C – Press “SILENCE BUZZER”
C + press “RESET”
14.3 Operation

The operation of **SmartTerminal** can be considered to be in one of three states, these are;

1. **Power up** - when the SmartTerminal is initialising
2. **Normal** - when the SmartTerminal address has been set and is communicating with the FACP, reporting normal / abnormal conditions and controlling the FACP via the front panel controls
3. **Fault** where the SmartTerminal is in fault and/or is unable to communicate with the FACP.

Power Up

The LCD displays a message telling the operator **SmartTerminal** is being powered up and that the hardware is being initialised. Once the hardware has been successfully initialised set the address and **SmartTerminal** should automatically transition to the normal state.

Should a failure occur on power up press the “CONFIG” button located on the LCD PCB and check the address is correct.

See Figure 107

Normal

The Normal state is entered from the “Power-up” or a return from the “Fault” state and is displayed on the LCD if the **SmartTerminal** is communicating with the FACP and operating correctly. In this state the front panel Power indicator is illuminated.

Fault

SmartTerminal enters the Fault state upon;

- A hardware failure
- LCD module failure or
- A loss of communications with the FACP (indicated by the “DIAGNOSTIC” LED – not flashing and the “no communications” message being displayed. See Figure 107)

In a Fault condition the front panel NORMAL indicator is extinguished and the details of the fault are displayed on the LCD. The FACP will also indicate a fault in a similar manner.
14.4 Setting the Address

Open the front door; locate the “CONFIG” button situated on the left hand side of the PCB and press for 3 seconds. The buzzer and “Config” LED will double beep and flash respectively to indicate that the Configuration mode has been entered. The LCD will now display the Configuration screen. This screen consists of the code version number, current address and four adjustment markers. These markers A-, A+, C-, and C+ are used to indicate the keys that adjust the address and LCD contrast.

Use the “PREVIOUS (A-) and NEXT” (A+) keys to select the desired address. The default value for this address is 255 which is not a valid SmartTerminal address. The user must then select an address value from 1 to 30, i.e. the same address as that set in the FACP. The keys corresponding to C- (ACK) and C+ (RESET) are used in a similar manner to decrease and increase the LCD contrast level. There is audible feedback for all key presses.

Once the address has been set press the “CONFIG” button again for 3 seconds and the screen will return to its default and the “DIANOSTIC” LED will return to a slow flash. This slow flash indicates SmartTerminal and the FACP are communicating normally i.e. the LED flashes if communications data is being received from the FACP.

 Note: If the address is not set within the time out period of approximately 75 seconds SmartTerminal will return to its normal state.

 Note: Each SmartTerminal must have its own individual address.

Figure 102: Main PCB Layout
14.5 Mechanical

SmartTerminal essentially consists of two PCBs;

1. BRD82LTB – FACP –. The LCDA Termination Board is mounted inside the FACP and provides the protected RS485 communications and 27VDC to the **SmartTerminal**.

2. BRD82ICC – Control, LCD Communications and LCD Driver Board

SmartTerminal can be supplied in three variants Slim Line ABS (externally powered) BX1 ABS (externally powered) and BX1 ABS (internally powered) and consists of;

Note: A Communications Extender Board will be required if the Comms Bus in the FACP is fully utilised and / or if one is not fitted.

The front door of the ABS version is locked by way of two clips on the right hand side of the cabinet. A special locating key which has two raised pins that are inserted into the side of the cabinet unlocks the door.

![Figure 103: ABS Door Key and Front Panel Add On Card Surround Release Clip](image)

![Figure 104: Typical Layout (Externally Powered) and Location of Keyholes](image)
14.6 Installation & Cabling

The Communications Extender Board (Item Number 159-0129) should be mounted into the FACP and cabled as shown below.

It should be noted the Communications Extender Board and its supporting plate is mounted in a piggy back fashion onto one of the loop / zone boards.

Figure 105: FACP Internal Layout

SmartTerminal is then connected to the FACP as shown below.

Figure 106: Connecting SmartTerminal's to the FACP
14.7 Specifications

| **MECHANICAL** | |
| Dimensions ABS Cabinet: (mm) | 195mm (H) x 345mm (W) x 50mm (D) |

ENVIROMENTAL	
Temperature:	-5°C to + 55°C
Humidity:	25% to 75%

INPUT POWER	
Operating Voltage (nominal):	27VDC
Operating Voltage (minimum):	18VDC
Quiescent Current @ 26.5VDC:	12.4mA (back light, off buzzer off)
Maximum Current:	43.8mA (back light on, buzzer on)
Cabling Requirements:	2 core 1.5 to 2.5mm²
Optional 27VDC Power Supply:	1.8A plus 400mA Battery Charging
Batteries:	12Ahr

27VDC OUTPUTS	
Auxiliary 27VDC Distribution Protection:	24VDC 500mA Monitored
Cabling Requirements:	2 core 1.5 to 2.5mm²

COMMUNICATIONS	
Internal to FACP:	RS485
External to FACP:	RS485
Cabling Requirements:	Twisted pair plus power
Fault monitoring:	O/C, S/C
Maximum Number of **SmartTerminal's** per FACP:	30
Maximum Distance (from FACP):	1.2Kms.
LCD	4 line X 40 character - backlit

Note: A maximum of 30 **SmartTerminal's** may be connected to the communications bus over a distance of approximately 1.2Kms.
14.8 Setting the SmartTerminal Controller Configuration in ConfigManager

Right click on the Controller icon and select “Edit Module Types” to bring up the following screen/s.

Click within the check box to “tick” the check box and click OK. Double click on the Controller to open the Panel screen and the SmartTerminal tab should now be visible along with the other installed functions.

14.9 Setting the SmartTerminal Reporting Parameters in ConfigManager

To set the SmartTerminal parameters click on the SmartTerminal tab and the following screen will be displayed. Under the assigned SmartTerminal Card designator, 1 to 30, click in the Active box to change the “N” (NO not fitted) to “Y” (YES fitted) and then enter or type in a “Description”. The description should be a name given to the SmartTerminal (LCDM) or its physical location. Double click in each of the “Report” boxes to display and set the, “Y” (Yes reports the parameter) and “N” (No does not report the parameter) “Alarms, Faults, Disables” parameters that SmartTerminal will display on each SmartTerminal at each location.

Note: A maximum of 30 SmartTerminals can be used in the configuration of the FACP.

Figure 107: The Controller Edit / Add Module Types Screens

Figure 108: Example of SmartTerminal Configuration Settings Screen
In the above example **Card 1 & 2**;
- Are active
- Are situated in the factory floor area 8
- Will display all Alarms
- Will not display any Faults, and
- Will not display any Disables

Card 3
- Is active
- Is situated in the stores area
- Will display all Alarms
- Will display any Faults, and
- Will not display any Disables

Card 4 & 5
- Are active
- Are situated in the security areas
- Will display all Alarms
- Will display any Faults, and
- Will display any Disables

14.10 **Trouble Shooting Chart**

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Supply LED not illuminated</td>
<td>Check supply voltage it should be set to 27.2VDC.</td>
</tr>
<tr>
<td></td>
<td>Nominal fault voltages are - Low = (<18VDC)</td>
</tr>
<tr>
<td></td>
<td>High = (> 28VDC)</td>
</tr>
<tr>
<td>FACP Earth Fault LED illuminated</td>
<td>Check all input and output cabling and wiring assemblies for short to ground</td>
</tr>
<tr>
<td>FACP System Fault LED illuminated</td>
<td>Ensure correct panel configuration</td>
</tr>
<tr>
<td></td>
<td>Check all connections for loose wiring</td>
</tr>
<tr>
<td>FACP Warning System Fault LED</td>
<td>Check correct E.O.L is fitted</td>
</tr>
<tr>
<td>illuminated</td>
<td>Check wiring is connected correctly</td>
</tr>
<tr>
<td>RS485 Communication Bus not working</td>
<td>Refer FACP LCD. This may identify where there is a break in the communication line</td>
</tr>
<tr>
<td></td>
<td>Check the SmartTerminal Diagnostic Config LED is flashing.</td>
</tr>
<tr>
<td></td>
<td>If not the FACP is not communicating with the SmartTerminal. Check the RS485 cabling.</td>
</tr>
<tr>
<td></td>
<td>If flashing check the SmartTerminal’s address.</td>
</tr>
</tbody>
</table>
15 RS232 Modem / Programming / Debug Interfacing

The modem I/O port is a DB9 connector (CN8 situated on the lower left hand corner of the Main Board BRD85MBA) that is normally used for programming of the FACP via the serial port of a PC or Laptop. The Controller also has the required hand shaking to support connection to a Modem, thus allowing the FACP to be programmed from a remote site that has an established telephone connection. This allows the system software to be upgraded by simply transmitting a file via the serial port of the PC or Modem external to the FACP. Diagnostic facilities are also available via the same connection.

Figure 109: DB9 Connector CN8 as Mounted on the Main Board

![DB9 Connector CN8 as Mounted on the Main Board](image)

Figure 110: Modem / Programming / Debug Cabling

![Modem / Programming / Debug Cabling](image)

Note: Debug/Notebook cables are available from AMPAC
List Of Compatible Detectors

Conventional Detectors

The following range of conventional detectors has approval to be used with the FireFinder™ conventional zone board (302-6710).

<table>
<thead>
<tr>
<th>Apollo Actuating Device</th>
<th>MAX No Of Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apollo Series 60, 55000-100 grade 1 heat (60deg Celsius)</td>
<td>32</td>
</tr>
<tr>
<td>Apollo Series 60, 55000-101 grade 2 heat (65deg Celsius)</td>
<td>32</td>
</tr>
<tr>
<td>Apollo Series 60, 55000-102 grade 3 heat (75deg Celsius)</td>
<td>32</td>
</tr>
<tr>
<td>Apollo Series 60, 55000-103 range 1 heat (80deg Celsius)</td>
<td>32</td>
</tr>
<tr>
<td>Apollo Series 60, 55000-104 range 2 heat (100deg Celsius)</td>
<td>32</td>
</tr>
<tr>
<td>Apollo Base 45681-200 (for above detectors)</td>
<td></td>
</tr>
<tr>
<td>Apollo Series 60, 55000-200 Ionisation Smoke</td>
<td>32</td>
</tr>
<tr>
<td>Apollo Series 60, 55000-300 Photoelectric Smoke</td>
<td>32</td>
</tr>
<tr>
<td>Apollo Series 60, 53546-014 Duct Sampling Unit</td>
<td>32</td>
</tr>
<tr>
<td>Apollo Base 45681-205 (for above detectors)</td>
<td></td>
</tr>
</tbody>
</table>

Apollo / Ampac Addressable Devices

The following range of addressable detectors has approval to be used with the FireFinder™ addressable Loop Board (BRD86DLTB-B).

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apollo XP95 Ionisation Smoke Monitor</td>
<td>55000-520</td>
</tr>
<tr>
<td>Apollo XP95 Optical Smoke Monitor</td>
<td>55000-620</td>
</tr>
<tr>
<td>Apollo XP95 Temperature Monitor (STANDARD)</td>
<td>55000-420</td>
</tr>
<tr>
<td>Apollo XP95 Temperature Monitor (HIGH)</td>
<td></td>
</tr>
<tr>
<td>Apollo Discovery Ion Smoke Monitor</td>
<td>58000-500</td>
</tr>
<tr>
<td>Apollo Discovery Optical Smoke Monitor</td>
<td>58000-600</td>
</tr>
<tr>
<td>Apollo Discovery Heat</td>
<td>58000-400</td>
</tr>
<tr>
<td>Apollo Discovery Multi-sensor</td>
<td>58000-700</td>
</tr>
<tr>
<td>Apollo XP95 Base</td>
<td>45681-210</td>
</tr>
<tr>
<td>Apollo XP95 Isolator</td>
<td>55000-700</td>
</tr>
<tr>
<td>Apollo XP95 Isolator Base</td>
<td>45681-211</td>
</tr>
<tr>
<td>Apollo XP95 Manual Call Point</td>
<td>55000-905</td>
</tr>
<tr>
<td>Apollo Discovery Manual Call Point</td>
<td>58000-910</td>
</tr>
<tr>
<td>Input/Output Unit</td>
<td>55000-818</td>
</tr>
<tr>
<td>Switch Monitor Plus</td>
<td>55000-809</td>
</tr>
<tr>
<td>Mini Switch Monitor</td>
<td>55000-833</td>
</tr>
<tr>
<td>Sounder Control Unit</td>
<td>55000-823</td>
</tr>
<tr>
<td>Apollo XP95 Intrinsically Safe Protocol Translator</td>
<td>55000-855</td>
</tr>
<tr>
<td>Zone Monitor</td>
<td>55000-813</td>
</tr>
<tr>
<td>Loop Sounder</td>
<td>55000-261</td>
</tr>
<tr>
<td>Ampac 3-IOD 3 Input / 3 Output Device</td>
<td>Consult your local</td>
</tr>
<tr>
<td>Ampac SID Single Input Device</td>
<td>Ampac</td>
</tr>
<tr>
<td>Ampac Zone Interface Device</td>
<td>Distributor</td>
</tr>
</tbody>
</table>
17 Certification Information

The FireFinder™ is designed and manufactured by:

AMPAC TECHNOLOGIES PTY LTD
7 Ledgar Rd
Balcatta
WA 6021
Western Australia
PH: 61-8-9242 3333
FAX: 61-8-9242 3334

Manufactured to: ________________________________
Certificate of Compliance Number: ________________________________
Equipment Serial Number: ________________________________
Date of Manufacture: ________________________________
Troubleshooting Chart

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Mains Power</td>
<td>Check mains Fuse</td>
</tr>
</tbody>
</table>
| Supply fault LED illuminated | Check output voltage it should be set to 27.4V.
Low = (less than 24.5 V)
High = (greater than 28 V)
Check the battery has been connected properly |
| Earth Fault LED illuminated | Check all input and output cabling and wiring assemblies for short to ground |
| System Fault LED illuminated | Ensure correct software is installed
Check all connections for loose wiring |
| Warning System Fault LED illuminated | Check correct E.O.L is fitted (10K)
Check wiring is connected correctly |
| Maintenance Alarm cleared but FireFinder™ still displays Maintenance Alarm | Carry out Loop Test |
| LCD displays LOOP (number) open circuit | Check in and out legs are connected correctly at the loop termination board |
| Unable to clear an O/C or S/C on a loop | You must perform a loop test to clear the fault.
This is a level 1 function. |
| Communication Loop not working | Check for correct software installed in all communication boards.
Check LCD at Main controller. This may identify where there is a break in the communication line |
| Can not access Function menu | Incorrect Password entered |
| Forgotten password | Ring AMPAC and directions will be given to provide you with a temporary code |
| An Analogue Fault occurs when using a Zone Monitor to monitor a switch. | A 1.8k Ohm resistor must be placed in series with the switch contacts. |
| Sounder Fault | Make sure you have a 10K Ohm EOL resistor fitted and a diode (1N4004) in series with the sounder |
19 Address Setting

BINARY ADDRESS SETTING (APOLLO)

SERIES XP95 - ADDRESS DATA

DIL SWITCH: ON = 1 OFF = 0 ADDRESS TAG FOR DETECTORS (I/O DEVICES)

<table>
<thead>
<tr>
<th>Addr</th>
<th>1234567</th>
<th>Addr</th>
<th>1234567</th>
<th>Addr</th>
<th>1234567</th>
<th>Addr</th>
<th>1234567</th>
<th>Addr</th>
<th>1234567</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000000</td>
<td>26</td>
<td>0101100</td>
<td>51</td>
<td>1100110</td>
<td>76</td>
<td>0011001</td>
<td>101</td>
<td>1010011</td>
</tr>
<tr>
<td>2</td>
<td>0100000</td>
<td>27</td>
<td>1101100</td>
<td>52</td>
<td>0010110</td>
<td>77</td>
<td>1011001</td>
<td>102</td>
<td>0110011</td>
</tr>
<tr>
<td>3</td>
<td>1100000</td>
<td>28</td>
<td>0011100</td>
<td>53</td>
<td>1010110</td>
<td>78</td>
<td>0111001</td>
<td>103</td>
<td>1110011</td>
</tr>
<tr>
<td>4</td>
<td>0010000</td>
<td>29</td>
<td>1011100</td>
<td>54</td>
<td>0101110</td>
<td>79</td>
<td>1111001</td>
<td>104</td>
<td>0001011</td>
</tr>
<tr>
<td>5</td>
<td>1010000</td>
<td>30</td>
<td>0111100</td>
<td>55</td>
<td>1101110</td>
<td>80</td>
<td>0000101</td>
<td>105</td>
<td>1001011</td>
</tr>
<tr>
<td>6</td>
<td>0110000</td>
<td>31</td>
<td>1111100</td>
<td>56</td>
<td>0001110</td>
<td>81</td>
<td>1000101</td>
<td>106</td>
<td>0101011</td>
</tr>
<tr>
<td>7</td>
<td>1110000</td>
<td>32</td>
<td>0000010</td>
<td>57</td>
<td>1001110</td>
<td>82</td>
<td>0100101</td>
<td>107</td>
<td>1110111</td>
</tr>
<tr>
<td>8</td>
<td>0001000</td>
<td>33</td>
<td>1000010</td>
<td>58</td>
<td>0111110</td>
<td>83</td>
<td>1100010</td>
<td>108</td>
<td>0011111</td>
</tr>
<tr>
<td>9</td>
<td>1001000</td>
<td>34</td>
<td>0110010</td>
<td>59</td>
<td>1101110</td>
<td>84</td>
<td>0010101</td>
<td>109</td>
<td>0101111</td>
</tr>
<tr>
<td>10</td>
<td>0101000</td>
<td>35</td>
<td>1100010</td>
<td>60</td>
<td>0011110</td>
<td>85</td>
<td>1010101</td>
<td>110</td>
<td>0111011</td>
</tr>
<tr>
<td>11</td>
<td>1101000</td>
<td>36</td>
<td>0010010</td>
<td>61</td>
<td>1011110</td>
<td>86</td>
<td>0101101</td>
<td>111</td>
<td>1111111</td>
</tr>
<tr>
<td>12</td>
<td>0011000</td>
<td>37</td>
<td>1010010</td>
<td>62</td>
<td>0111110</td>
<td>87</td>
<td>1101101</td>
<td>112</td>
<td>0000111</td>
</tr>
<tr>
<td>13</td>
<td>1011000</td>
<td>38</td>
<td>0101010</td>
<td>63</td>
<td>1111110</td>
<td>88</td>
<td>0001011</td>
<td>113</td>
<td>1000111</td>
</tr>
<tr>
<td>14</td>
<td>0111000</td>
<td>39</td>
<td>1110010</td>
<td>64</td>
<td>0000010</td>
<td>89</td>
<td>1001101</td>
<td>114</td>
<td>0100111</td>
</tr>
<tr>
<td>15</td>
<td>1111000</td>
<td>40</td>
<td>0001010</td>
<td>65</td>
<td>1000001</td>
<td>90</td>
<td>0101101</td>
<td>115</td>
<td>1100111</td>
</tr>
<tr>
<td>16</td>
<td>0000100</td>
<td>41</td>
<td>1001010</td>
<td>66</td>
<td>0100001</td>
<td>91</td>
<td>1110101</td>
<td>116</td>
<td>0010111</td>
</tr>
<tr>
<td>17</td>
<td>1000100</td>
<td>42</td>
<td>0101010</td>
<td>67</td>
<td>1100001</td>
<td>92</td>
<td>0011101</td>
<td>117</td>
<td>1010111</td>
</tr>
<tr>
<td>18</td>
<td>0100100</td>
<td>43</td>
<td>1101010</td>
<td>68</td>
<td>0010001</td>
<td>93</td>
<td>1011101</td>
<td>118</td>
<td>0101111</td>
</tr>
<tr>
<td>19</td>
<td>1100100</td>
<td>44</td>
<td>0011010</td>
<td>69</td>
<td>1010001</td>
<td>94</td>
<td>0111101</td>
<td>119</td>
<td>1111111</td>
</tr>
<tr>
<td>20</td>
<td>0010100</td>
<td>45</td>
<td>1011010</td>
<td>70</td>
<td>0100101</td>
<td>95</td>
<td>1111101</td>
<td>120</td>
<td>0001111</td>
</tr>
<tr>
<td>21</td>
<td>1010100</td>
<td>46</td>
<td>0111010</td>
<td>71</td>
<td>1110001</td>
<td>96</td>
<td>0000011</td>
<td>121</td>
<td>1001111</td>
</tr>
<tr>
<td>22</td>
<td>0110100</td>
<td>47</td>
<td>1111010</td>
<td>72</td>
<td>0001001</td>
<td>97</td>
<td>1000011</td>
<td>122</td>
<td>0101111</td>
</tr>
<tr>
<td>23</td>
<td>1110100</td>
<td>48</td>
<td>0001101</td>
<td>73</td>
<td>1001001</td>
<td>98</td>
<td>0100011</td>
<td>123</td>
<td>1101111</td>
</tr>
<tr>
<td>24</td>
<td>0001100</td>
<td>49</td>
<td>1000101</td>
<td>74</td>
<td>0101001</td>
<td>99</td>
<td>1100011</td>
<td>124</td>
<td>0011111</td>
</tr>
<tr>
<td>25</td>
<td>1001100</td>
<td>50</td>
<td>0100110</td>
<td>75</td>
<td>1101010</td>
<td>100</td>
<td>0010011</td>
<td>125</td>
<td>1011111</td>
</tr>
</tbody>
</table>

ON

Figure 111: Switch and Xpert card set to Address 11
Glossary of Terms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACF</td>
<td>ANCILLARY CONTROL FACILITY</td>
</tr>
<tr>
<td>ACKD</td>
<td>ACKNOWLEDGED</td>
</tr>
<tr>
<td>AHU</td>
<td>AIR HANDLING UNIT</td>
</tr>
<tr>
<td>ALM</td>
<td>ALARM</td>
</tr>
<tr>
<td>AVF</td>
<td>ALARM VERIFICATION FACILITY</td>
</tr>
<tr>
<td>AZF</td>
<td>ALARM ZONE FACILITY</td>
</tr>
<tr>
<td>AZC</td>
<td>ALARM ZONE CIRCUIT</td>
</tr>
<tr>
<td>C</td>
<td>RELAY COMMON CONTACT (WIPER)</td>
</tr>
<tr>
<td>CIC</td>
<td>CONTROLLER INTERFACE CARD</td>
</tr>
<tr>
<td>CN</td>
<td>CONNECTOR</td>
</tr>
<tr>
<td>CPU</td>
<td>COMMON PROCESSOR UNIT</td>
</tr>
<tr>
<td>DGP</td>
<td>DATA GATHERING POINT</td>
</tr>
<tr>
<td>EARTH</td>
<td>BUILDING EARTH</td>
</tr>
<tr>
<td>EOL</td>
<td>END OF LINE</td>
</tr>
<tr>
<td>FDS</td>
<td>FIRE DETECTION SYSTEM</td>
</tr>
<tr>
<td>FACP</td>
<td>FIRE ALARM CONTROL PANEL</td>
</tr>
<tr>
<td>FLT</td>
<td>FAULT</td>
</tr>
<tr>
<td>GND</td>
<td>GROUND (0 VOLTS) NOT EARTH</td>
</tr>
<tr>
<td>I/O</td>
<td>INPUT/OUTPUT</td>
</tr>
<tr>
<td>LCD</td>
<td>LIQUID CRYSTAL DISPLAY</td>
</tr>
<tr>
<td>MAF</td>
<td>MASTER ALARM FACILITY</td>
</tr>
<tr>
<td>MCP</td>
<td>MANUAL CALL POINT</td>
</tr>
<tr>
<td>MOV</td>
<td>METAL OXIDE VARISTOR (TRANSIENT PROTECTION)</td>
</tr>
<tr>
<td>NIC</td>
<td>NETWORK INTERFACE CARD</td>
</tr>
<tr>
<td>N/C</td>
<td>NORMALLY CLOSED RELAY CONTACTS</td>
</tr>
<tr>
<td>N/O</td>
<td>NORMALLY OPEN RELAY CONTACTS</td>
</tr>
<tr>
<td>N/W</td>
<td>NETWORK</td>
</tr>
<tr>
<td>PCB</td>
<td>PRINTED CIRCUIT BOARDS</td>
</tr>
<tr>
<td>P/S</td>
<td>POWER SUPPLY</td>
</tr>
<tr>
<td>PSM</td>
<td>POWER SUPPLY MODULE</td>
</tr>
<tr>
<td>REM</td>
<td>REMOTE</td>
</tr>
<tr>
<td>SPOT</td>
<td>SINGLE PERSON OPERATING TEST</td>
</tr>
<tr>
<td>TB</td>
<td>TERMINAL BLOCK</td>
</tr>
<tr>
<td>VDC</td>
<td>DIRECT CURRENT VOLTS</td>
</tr>
</tbody>
</table>
21 Definitions

Addressable system - a fire alarm and detection system that contains addressable alarm zone facilities or addressable control devices.

Alarm Verification Facility (AVF) - that part of the FACP, which provides an automatic resetting function for spurious alarm signals so that they will not inadvertently initiate Master Alarm Facility (MAF), or ACF functions. Using ConfigManager prior to downloading to the FireFinder™ sets this option.

Alarm zone - the specific portion of a building or complex identified by a particular alarm zone facility.

Alarm Zone Circuit (AZC) - the link or path that carries signals from an actuating device(s) to an alarm zone facility(s).

Alarm Zone Facility (AZF) - that part of the control and indicating equipment that registers and indicates signals (alarm and fault) received from its alarm zone circuit. It also transmits appropriate signals to other control and indicating facilities.

Alert signal - an audible signal, or combination of audible and visible signals, from the occupant warning system to alert wardens and other nominated personnel as necessary to commence prescribed actions.

Ancillary Control Facility (ACF) - that portion of the control and indicating equipment that on receipt of a signal initiates predetermined actions in external ancillary devices.

Ancillary equipment - remote equipment connected to FACP.

Ancillary relay - relay within FACP to operate ancillary equipment.

Ancillary output - output for driving ancillary equipment.

Approved and approval - approved by, or the approval of, the Regulatory Authority concerned.

Card-detect link - a link on a module connector to indicate the disconnection of the module.

Conventional System - is a fire detection system using a dedicated circuit for each alarm zone.

Distributed system - a fire alarm and detection system where sections of the control and indicating equipment are remotely located from the FACP or where sub-indicator panel(s) communicate with a main FACP.

Field connections - are connections made to FACP or ancillary equipment during installation.

Fire alarm system - an arrangement of components and apparatus for giving an audible, visible, or other perceptible alarm of fire, and which may also initiate other action.

Fire detection system - an arrangement of detectors and control and indicating equipment employed for automatically detecting fire and initiating other action as arranged.

Fire Alarm Control Panel (FACP) - a panel on which is mounted an indicator or indicators together with associated equipment for the fire alarm or sprinkler system.

Fire resisting - an element of construction, component or structure which, by requirement of the Regulatory Authority, has a specified fire resistance.

Indicating equipment - the part of a fire detection and or alarm system, which provides indication of any warning signals (alarm and fault), received by the control equipment.

Interface - the interconnection between equipment that permits the transfer of data.

Main equipment - equipment essential to the operation of the system including, control equipment, amplification equipment and power supply modules.

Master Alarm Facility (MAF) - that part of the equipment which receives alarm and fault signals from any alarm zone facility and initiates the common signal (alarm and/or fault) for transmission to the fire control station. Bells and other ancillary functions may be initiated from this facility.

Power Supply - that portion of the FACP which supplies all voltages necessary for its operation.

Regulatory Authority - an authority administering Acts of Parliament or Regulations under such Acts.
MAIN MENU OPTIONS

MENU KEY / FUNCTION KEY
(TO ENTER MENU / TO FUNCTION MENU)

ALARMS (DISPLAY ALARMS)

PREALARMS (DISPLAY PRE-ALARMS)

FAULTS (DISPLAY FAULTS OF SELECTED FIELDS)

ZONES/SENSORS

LOOP

MODULE

P-SUPPLY

BRIGADE

TEST FAILS (TEST FAILURES)

BEGS

ISOLATES (DISPLAY ALL SYSTEM ISOLATES)

STATUS (DISPLAY STATUS OF SELECTED FIELDS)

LOOPS (LOOP/SENSOR No)

PRINT ALL DEVICES

PRINT TOTALS

MODULES (MODULE No)

SLAVE

P-S

BRIGADE

EXTERNAL LED MMICS

IO

OUTPUTS (OUTPUT No)

INPUT (INPUT No)

NETWORK (IF NETWORK IS ENABLED)

PRINT TOTALS

REMOTE SLAVE MODULES

REMOTE LED MMICS

SYSTEM

ANALOGUE VALUES

NETWORK

NOT ENABLED

NETWORK NOT ENABLED

TESTING (TESTING THE SELECTED TEST FIELDS)

ALARM (TEST ALARM FIELDS)

ZONE (ZONE No)

SENSOR (LOOP/SENSOR No)

FAULT (TEST FAULT FIELDS)

ZONE (ZONE No)

SENSOR (LOOP/SENSOR No)

LAMP
Statement of Compliance

Please PRINT

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Name of building</td>
</tr>
<tr>
<td>2.</td>
<td>Address</td>
</tr>
<tr>
<td>3.</td>
<td>I/WE have installed in the above building an alteration to the system manufactured by, OR Fire Alarm Control Panel Brand Name</td>
</tr>
<tr>
<td></td>
<td>a system manufactured by</td>
</tr>
<tr>
<td>4.</td>
<td>The system is connected to the monitoring service provider Name of Service Provider</td>
</tr>
<tr>
<td></td>
<td>by a permanent [] non-permanent [] connection (tick)</td>
</tr>
<tr>
<td>5.</td>
<td>Date of connection [] / [] / []</td>
</tr>
<tr>
<td>6.</td>
<td>Ancillary equipment connected to the control and indicating equipment (attach).</td>
</tr>
<tr>
<td>7.</td>
<td>Current drain of ancillary loads powered from the CIE power supply []</td>
</tr>
<tr>
<td>8.</td>
<td>Primary power source voltage []</td>
</tr>
<tr>
<td>9.</td>
<td>Battery type and capacity Manufacturer [] AH</td>
</tr>
<tr>
<td>10.</td>
<td>Is maintenance agreement held for the system? [] Yes [] No</td>
</tr>
<tr>
<td>11.</td>
<td>Operator's handbook supplied? [] Yes [] No</td>
</tr>
<tr>
<td>12.</td>
<td>Logbook supplied? [] Yes [] No</td>
</tr>
<tr>
<td>13.</td>
<td>'As-installed' drawings supplied? [] Yes [] No</td>
</tr>
<tr>
<td>14.</td>
<td>Portions of the building not protected by this system are; (Please PRINT)</td>
</tr>
<tr>
<td></td>
<td>1.</td>
</tr>
<tr>
<td></td>
<td>2.</td>
</tr>
<tr>
<td></td>
<td>3.</td>
</tr>
<tr>
<td></td>
<td>4.</td>
</tr>
<tr>
<td></td>
<td>5.</td>
</tr>
<tr>
<td></td>
<td>6.</td>
</tr>
<tr>
<td></td>
<td>7.</td>
</tr>
<tr>
<td></td>
<td>8.</td>
</tr>
<tr>
<td></td>
<td>9.</td>
</tr>
<tr>
<td></td>
<td>10.</td>
</tr>
</tbody>
</table>
15. I/We

1. ____________________ 2. ____________________ 3. ____________________

Print Name/s

Hereby certify that the installation has been thoroughly tested from each actuating device and that a test of the transmission of the alarm signal to the monitoring service provider has been satisfactorily carried out.

I/We further certify that the whole system and all components called up in Clause 1.3 in connection therewith are installed entirely in accordance with the current requirements of AS 1670.1, -

Except with regard to the following details which have already been approved”, approval attached.

Strike out the bolded sentence if there have not been any exceptions.

__

__

__

__

__

__

__

Signature__ Date ______ / ______ / ______

Installing Company ______________________________

Please PRINT or Stamp
23.1 Installation Details

Indicate with a number in brackets the number of actuating devices in concealed spaces.

* Add addressable loop number in brackets where applicable.

<table>
<thead>
<tr>
<th>Zone</th>
<th>Number and Type of Actuating Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* No of Actuating Devices per Zone</td>
</tr>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

Additional Information: ___

(Attach if necessary)

Name __________________________ Company __________________________ Signature _____________ Date ________________
24 **Commissioning Test Report**

This *FireFinder™* Fire Alarm Control Panel is installed at:

Company Name

Street

Suburb

State / Country

Post Code

(Company Name & Installation Address)

Owner or Owners' Authorized Representative:

Company Name

Street

Suburb

State / Country

Post Code

Type of Installation: NEW MODIFIED ADDITION UPGRADE

(Circle)

Date of commissioning tests:

Name and address of commissioning company, (in 'BLOCK LETTERS')

Company Name

Street

Suburb

State / Country

Post Code

Commissioning Representative: Name (Print)

Signature:
24.1 Procedure

The following tests are the minimum that shall be performed when commissioning a system using the FireFinder™ Fire Alarm Control Panel. Supplements to these test may be added by way of attachments or notation (using waterproof ink) to this documentation. If supplements or tests are added reference to them shall be made at an appropriate point on this document.

This Commissioning Record is to be completed in conjunction with the -

- operator’s manual;
- installer’s statement(s);
- ‘as-installed’ drawings; and
- detector test records,

The Record provides a complete description of the installed system and its tested performance at the time of being commissioned.

24.2 System Information

<table>
<thead>
<tr>
<th>GENERAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES ☒ NO ☐ NA ☐</td>
</tr>
</tbody>
</table>

(a) Equipment: Equipment has been designed and constructed in accordance with the relevant Standards.

(b) Installation: Equipment has been located, installed and interconnected in accordance with the system documentation.

(c) Compatibility: All detectors and other devices used in the system are—

(i) listed in the operator’s manual;

(ii) compatible with the relevant parts of CIE, particularly that the permitted number of detectors and other devices for each circuit is not exceeded;

(iii) installed in an environment for which they are suitable;

(iv) not set to a sensitivity outside that prescribed in the relevant product Standard.

(d) Alarm zone limitations: The alarm zone limitations in Clause 2.4 of AS 1670.1 are not exceeded.

(e) Primary power source

(i) The primary power source for the system has been provided in accordance with AS/NZS 3000.

(ii) The isolating switch disconnects all active conductors.

(iii) Five operations of the primary power source switch did not cause an alarm to be indicated on the system.

(f) Secondary power source

(i) The secondary power source is of a suitable type and capacity complying with the requirements of Clause 3.16.2 of AS 1670.1.

(ii) The float voltage, charger type and setting is correct and in accordance with the battery manufacturer’s recommendation.

(g) Battery temperature and voltage: The battery voltage corresponds to that specified by the battery manufacturer for the temperature measured after 24 hour quiescent operation.
(h) Alarm zone parameters: Each alarm zone circuit is within the equipment manufacturer’s specifications.

(i) Wire-free alarm zones: Wire-free actuating device parameters meet the minimum parameters specified by the manufacturer, including that the receiver responds to signals from an actuating device for alarm, tamper, low standby power signals and gives a fault signal when the supervisory signal condition is absent.

(j) Operation of fault and alarm signals: Fault and alarm conditions correctly detect and indicate as the correct, alarm zone, operating other required indicators, and operate relevant outputs of the CIE.

(k) Mimic panel: All mimic panels, annunciators, etc., operate correctly.

(l) Alarm zone controls: Alarm test, fault test, isolate and reset facility of each alarm zone operates correctly.

(m) Alarm dependency: Alarm dependency works correctly and does not apply to devices listed in Clause 3.3 of AS 1670.1.

(n) CIE response to actuating device operation: Each actuating device has operated when tested with a medium suitable for the device type and the alarm has indicated on the FIP and at the tested device.

(o) Fault response time: The response to a fault does not exceed 100 s for each alarm zone circuit.

(p) Alarm response time: At least one detector in each alarm zone has been tested and the response to the alarm does not exceed 10 s or the period specified when dependency on more than one alarm signal is used.

(q) Supervisory signal response time: At least one supervisory device in each alarm zone circuit has been tested and the response to the supervisory device does not exceed 100 s.

(r) Alarm acknowledgment facility: Alarm acknowledgement facilities operate in accordance with the requirements of Clause 3.2 AS 1670.1.

(s) Occupant warning system

(i) A fault signal is displayed at the CIE when the circuit wiring at the last speaker or sounder is short or open circuited.

(ii) Each sounder/speaker operates in accordance with the requirements of Clause 3.22 of AS 1670.1 and a record of the sound pressure level has been made.

(t) The external alarm indication is visible from the main approach to the building.

(u) Manual call points

(i) Each manual call point operates correctly.

(ii) The activation of manual call points do not cause existing detector alarm indications to be extinguished.

(iii) Manual call points are not subject to alarm dependency.

(v) Smoke and fire door release: Each door-release device operates correctly.

(w) Flame detectors

(i) The number and type of flame detectors provide adequate protection for the area.
(ii) There are no ‘blind’ spots in the area protected.

(iii) Detectors are rigidly fixed.

(iv) Detector lenses are clean and adequately protected from dust and extraneous radiation sources.

(v) Detectors respond to a flame or simulated flame source.

(x) Multi-point aspirating smoke detectors

(i) Response time of all sampling points meets the requirements of AS 1670.1.

(ii) Alarm settings and indicators operate correctly.

(iii) Remote indication of alarm and fault signals operate correctly.

(iv) Airflow failure indicator operates correctly.

(v) System (signal) failure indicators operate correctly.

(vi) Isolate and reset functions operate correctly.

(vii) Alarm and fault test facilities operate correctly.

(y) Duct sampling unit: The alarm indicator is clearly visible from a trafficable area and the duct air velocity exceeds the minimum velocity specified for the unit. If not, the measured differential pressure is at least the minimum specified for the unit.

(z) Ancillary control functions: Each ancillary control function operates with the activation of associated alarm zones.

(aa) Alarm signaling equipment: Alarm signaling equipment initiates a fire alarm signal to the monitoring service provider.

(bb) Labeling: Alarm zone location is immediately apparent from the alarm zone labeling.

DOCUMENTATION
The following documentation is located in or adjacent to the FIP:

(a) ‘As-installed’ drawings.

(b) CIE documentation required by AS 4428.1 or AS 7240.2.

(c) Commissioning test report.

(d) Installer’s statement in accordance with Appendix E of AS 1670.1.

(e) A log complying with the requirements of Clause 7.3 of AS 1670.1.

(f) Aspirating system design tool calculation.
25 **Battery Capacity Calculation**

INTRODUCTION

The standby power source capacity, or battery capacity, determines how long the system will continue to operate in the event of the loss of the primary power source. It therefore becomes necessary to calculate the battery and hence power supply / battery charger capacity required for each installation.

The following calculator has been designed to determine the required capacity to meet the required standards. Should an existing panel be expanded the required battery and power supply capacity should be recalculated to ensure the panel continues to operate within the required standards.

The standards considered in this document are:

<table>
<thead>
<tr>
<th>AS1603/4428</th>
<th>EN54</th>
<th>NZS4512</th>
<th>UL72</th>
<th>MS1404</th>
<th>GB4717</th>
</tr>
</thead>
</table>

DESCRIPTION

Enter the number of units listed in the left hand column which go to make up the panel, complete the multiplication to obtain the quiescent current then multiply by the standby and alarm hours required by the standard.

POWER SUPPLY RATING

The minimum Power Supply Rating (4) is obtained by calculating the manufacturers recommended battery charge current [see Note] (1) then adding the quiescent current of the entire system (2) and the alarm current (3).

1. **Battery Capacity (AH) (determined from Calculator)** = Amps

 \[
 \text{Battery Capacity (AH)} = 24 \times 0.8
 \]

2. **Add Quiescent Current of the System (Iq)** = Amps

3. **Add the extra current that is drawn when in alarm (Ia)** = Amps

4. **Minimum Current Rating of Power Supply is** = Amps

Note: Point 1 Battery Capacity

The capacity of the battery shall be such that in the event of failure of the primary power source the batteries shall be capable of maintaining the system in normal working (quiescent) condition for at least 24 h, after which sufficient capacity shall remain to operate two worst case AZF’s and associated ACF’s for 30 min.

When calculating battery capacity, allowance shall be made for the expected loss of capacity over the useful life of the battery. A new battery shall be at least 125% of the calculated capacity requirements, based on a loss of 20% of its capacity over the useful life of the battery.

Note: Where the fire control station will not receive the system’s total power supply failure signal, the battery should have sufficient capacity to maintain the system for 96 h.
Panel Configuration

<table>
<thead>
<tr>
<th>Panel Configuration</th>
<th>Iq Calculation</th>
<th>Iq</th>
<th>Evac Type</th>
<th>Iq in mA</th>
<th>Ia in mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic 1 loop panel</td>
<td></td>
<td>240</td>
<td>EV20</td>
<td>41</td>
<td>650</td>
</tr>
<tr>
<td>Basic 2 loop panel</td>
<td></td>
<td>254</td>
<td>EV40</td>
<td>140</td>
<td>2500</td>
</tr>
<tr>
<td>Basic 16 Zone panel</td>
<td></td>
<td>360</td>
<td>EV60</td>
<td>150</td>
<td>3800</td>
</tr>
<tr>
<td>Extender</td>
<td></td>
<td>1.8</td>
<td>EV120</td>
<td>150</td>
<td>8500</td>
</tr>
<tr>
<td>SmartTerminal</td>
<td></td>
<td>156.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LED repeater</td>
<td></td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evac Module</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interface Modules

Additional 3.5 loops add	40 each	
Additional 2.4 loops add	15 each	
16 zone	143	
16/16 I/O	5	
Fire Fan Control	14	
32 Zone LED	0	
Network I/F	74	
Controller I/F	5.1	
Valve or Pump Display	3.7	
8 Way Bell Monitor	20	
Agent Release	29	

Loop Devices

XP95 Thermal A / B	0.25	
Discovery Thermal C&D	0.5	
XP95 Ion	0.28	
XP95 Photo	0.34	
Discovery Multisensor	0.5	
Discovery Photo	0.4	
Discovery Ion	0.5	
XP95 Short cct isolator	0.11	
XP95 I/O module	1.2	
XP95 Sounder control	1.9	
XP95 MCP	0.35	
XP95 Zone Monitor	6	
Ampac 3 I/O loop power	2.1	
Ampac 3 I/O ext. power	1.5	
Ampac SID / SIOD	1.7	

\[Iq = \]

Devices activating when the system is in alarm

<table>
<thead>
<tr>
<th>Devices</th>
<th>Iq (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 x Relays</td>
<td>60</td>
</tr>
<tr>
<td>Bell</td>
<td>30</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

\[Iqa = \]

Devices de-activating when the system goes into alarm

<table>
<thead>
<tr>
<th>Devices</th>
<th>Iq (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircon Relays</td>
<td>20</td>
</tr>
<tr>
<td>Electric locks</td>
<td>100</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>
PRIMARY POWER SOURCE CALCULATIONS

Battery Charger Current
Requirement: Battery is charged for 24 hrs. to provide $5I_q + 0.5I_a$

\[= (5xI_q) + Fc(0.5xI_a) \]

\[= \text{Ah Requirement} \]

Battery Charging Current Required

\[= \text{Ah above} \]

\[e \] is the battery efficiency, 0.8

\[= 24 \times e \]

\[= A \]

Power Supply Requirement
Select the greater of 1 or 2

1. $I_a + \text{non- battery backed ancillary alarm loads}$

2. $I_q + \text{non – battery backed quiescent loads}$

If the power supply is used as the charger the current rating of the supply shall be \([(1 \text{ or } 2) + \text{battery charger current}] \).
Example Calculation

Panel Configuration

<table>
<thead>
<tr>
<th>Device Type</th>
<th>No X</th>
<th>mA Off</th>
<th>(I_q) Calculation</th>
<th>(I_q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic 1 loop panel</td>
<td>1</td>
<td>240</td>
<td>(1 \times 240)</td>
<td>240</td>
</tr>
<tr>
<td>Basic 2 loop panel</td>
<td></td>
<td>254</td>
<td>(1 \times 254)</td>
<td>254</td>
</tr>
<tr>
<td>Basic 16 Zone panel</td>
<td>360</td>
<td>0</td>
<td>(1 \times 360)</td>
<td>360</td>
</tr>
<tr>
<td>Extender</td>
<td>1</td>
<td>1.8</td>
<td>(1 \times 1.8)</td>
<td>1.8</td>
</tr>
<tr>
<td>LCD repeater</td>
<td>156.2</td>
<td>0</td>
<td>(1 \times 156.2)</td>
<td>156.2</td>
</tr>
<tr>
<td>LED repeater</td>
<td>2</td>
<td>27</td>
<td>(2 \times 27)</td>
<td>54</td>
</tr>
<tr>
<td>Evac Module</td>
<td></td>
<td>0</td>
<td>(1 \times 0)</td>
<td>0</td>
</tr>
</tbody>
</table>

Interface Modules

<table>
<thead>
<tr>
<th>Addition</th>
<th>Calculations</th>
<th>(I_q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,5 loops add</td>
<td>(40 \text{ each} \times 0)</td>
<td>0</td>
</tr>
<tr>
<td>2,4 loops add</td>
<td>(15 \text{ each} \times 0)</td>
<td>0</td>
</tr>
<tr>
<td>16 zone</td>
<td>(3 \times 143)</td>
<td>429</td>
</tr>
<tr>
<td>16/16 I/O</td>
<td>(1 \times 5)</td>
<td>5</td>
</tr>
<tr>
<td>Fire Fan Control</td>
<td>(1 \times 6)</td>
<td>6</td>
</tr>
<tr>
<td>32 Zone LED</td>
<td>(0 \times 0)</td>
<td>0</td>
</tr>
<tr>
<td>Network I/F</td>
<td>(1 \times 74)</td>
<td>74</td>
</tr>
<tr>
<td>Controller I/F</td>
<td>(0 \times 5.1)</td>
<td>0</td>
</tr>
<tr>
<td>Valve or Pump Display</td>
<td>(1 \times 3.7)</td>
<td>3.7</td>
</tr>
<tr>
<td>8 Way Bell Monitor</td>
<td>(1 \times 20)</td>
<td>20</td>
</tr>
<tr>
<td>Agent Release</td>
<td>(1 \times 29)</td>
<td>29</td>
</tr>
</tbody>
</table>

Loop Devices

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Quantity</th>
<th>mA</th>
<th>(I_q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XP95 Thermal A & B</td>
<td>30</td>
<td>0.25</td>
<td>7.5</td>
</tr>
<tr>
<td>Discovery Thermal C&D</td>
<td></td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>XP95 Ion</td>
<td></td>
<td>0.28</td>
<td>0</td>
</tr>
<tr>
<td>XP95 Photo</td>
<td></td>
<td>0.34</td>
<td>0</td>
</tr>
<tr>
<td>Discovery Multisensor</td>
<td>30</td>
<td>0.5</td>
<td>15</td>
</tr>
<tr>
<td>Discovery Photo</td>
<td></td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>Discovery Ion</td>
<td></td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>XP95 Short cct isolator</td>
<td></td>
<td>0.11</td>
<td>0</td>
</tr>
<tr>
<td>XP95 I/O module</td>
<td>5</td>
<td>1.2</td>
<td>6</td>
</tr>
<tr>
<td>XP95 Sounder control</td>
<td></td>
<td>1.9</td>
<td>0</td>
</tr>
<tr>
<td>XP95 MCP</td>
<td></td>
<td>0.35</td>
<td>0</td>
</tr>
<tr>
<td>XP95 Zone Monitor</td>
<td></td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Ampac 3 I/O loop power</td>
<td></td>
<td>2.1</td>
<td>0</td>
</tr>
<tr>
<td>Ampac 3 I/O ext power</td>
<td></td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>Ampac SID / SIOD</td>
<td></td>
<td>1.7</td>
<td>0</td>
</tr>
</tbody>
</table>

\(I_q = 768.7 \)

Devices activating when the system is in alarm

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Quantity</th>
<th>mA</th>
<th>(I_q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 X Relays</td>
<td>10</td>
<td>60</td>
<td>600</td>
</tr>
<tr>
<td>Bell</td>
<td>4</td>
<td>30</td>
<td>120</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(I_{da} = 720 \)

Devices de-activating when the system goes into alarm

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Quantity</th>
<th>mA</th>
<th>(I_q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircon Relays</td>
<td>2</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Electric locks</td>
<td>4</td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>Other eg LAM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
$I_{dd} = \frac{440}{3}$

$I_{Alarm} = I_a = I_q + I_{da} - I_{dd}$

$= 769 + 720 - 440 = 1049mA$

Battery capacity at end of battery life

$= (I_q x 24) + Fc(I_a x 0.5)$

$= (769ma x 24) + 2(1049ma x 0.5)$

$= 18456ma + 1050ma$

Note: $+ 1,000ma = 1 Amp$

New battery capacity

$= 19.5 x 1.25$

$= 24.375 Ah$

Rounded up to nearest available

$= 25 Ah$

PRIMARY POWER SOURCE CALCULATIONS

Battery Charger Current

Requirement: Battery is charged for 24 hrs. to provide $5I_q + 0.5I_a$

$= (5I_q) + Fc(0.5I_a)$

$= (5 x 769) + 2(0.5 x 1049)$

$= 3845 + 1050$

Ah Requirement

$= 4.895Ah$

Battery Charging Current Required

$= 4.895$

$\frac{Ah}{24 \times e}$

e is the battery efficiency, 0.8

$= 0.26A$ (rounded)

Power Supply Requirement

Select the greater of 1 or 2

1. $I_a +$ non-battery backed ancillary alarm loads

2. $I_q +$ non – battery backed quiescent loads

If the power supply is used as the charger the current rating of the supply shall be $[(1 \text{ or } 2) + \text{battery charger current}]$.

List of Compatible Batteries

(Tested by SSL to comply with AS 1603.4 1987 Appendix G [valid until June 2002]).

Note 1: afp number is the SSL Listing Number.

Note 2: Types are the Manufacturers and not the suppliers.

Note 3: Automotive type batteries are not normally suitable for stationary use.
<table>
<thead>
<tr>
<th>afp - 791</th>
<th>afp - 792</th>
<th>afp - 1220</th>
<th>afp - 1228</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yuasa</td>
<td>Power-Sonic</td>
<td>Matsushita</td>
<td>B & B</td>
</tr>
<tr>
<td>NP Series</td>
<td>PS Series</td>
<td>LCR Series</td>
<td>BP Series</td>
</tr>
<tr>
<td>NPH1.3-12</td>
<td>PS-1208</td>
<td>LCR12V4BP</td>
<td>BP 1.2-12</td>
</tr>
<tr>
<td>NPH2-12</td>
<td>PS-1212</td>
<td>LC-R125P</td>
<td>BP 1.9-12</td>
</tr>
<tr>
<td>NPH3.2-12</td>
<td>PS-1219</td>
<td>LC-RC1217P</td>
<td>BP 4 -12</td>
</tr>
<tr>
<td>NPH5-12</td>
<td>PS-1232</td>
<td>LC-R127P</td>
<td>BP 7 -12</td>
</tr>
<tr>
<td>NPH16-12</td>
<td>PS-1240</td>
<td>LC-R127R2P</td>
<td>BP 12-12</td>
</tr>
<tr>
<td>NP0.8-12</td>
<td>PS-1270</td>
<td></td>
<td>BP 17-12</td>
</tr>
<tr>
<td>NP1.2-12</td>
<td>PS-12120</td>
<td>afp - 1221</td>
<td>BP 24-12</td>
</tr>
<tr>
<td>NP1.9-12</td>
<td>PS-1232</td>
<td>Matsushita</td>
<td>BP 40-12</td>
</tr>
<tr>
<td>BP Series</td>
<td></td>
<td>LCL Series</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LC-LA12V33P</td>
<td></td>
</tr>
<tr>
<td>NPH2.3-12</td>
<td>PS-1240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPH2-12</td>
<td>PS-1270</td>
<td>afp - 1222</td>
<td></td>
</tr>
<tr>
<td>NPH2.6-12</td>
<td>PS-12180</td>
<td>Matsushita</td>
<td></td>
</tr>
<tr>
<td>NPH4-12</td>
<td>PS-12240</td>
<td>LCL Series</td>
<td></td>
</tr>
<tr>
<td>NPH7-12</td>
<td>PS-12330</td>
<td>LC-LA12V33P</td>
<td></td>
</tr>
<tr>
<td>NPH12-12</td>
<td>PS-12400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPH24-12</td>
<td>PS-12650</td>
<td>afp - 1222</td>
<td></td>
</tr>
<tr>
<td>NPH24-12B</td>
<td></td>
<td>Matsushita</td>
<td></td>
</tr>
<tr>
<td>NPH38-12</td>
<td></td>
<td>LCL Series</td>
<td></td>
</tr>
<tr>
<td>NPH65-12</td>
<td></td>
<td>LC-LA12V33P</td>
<td></td>
</tr>
<tr>
<td></td>
<td>afp - 1222</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>afp - 1222</td>
<td></td>
</tr>
<tr>
<td></td>
<td>afp - 1222</td>
<td>afp - 1222</td>
<td></td>
</tr>
</tbody>
</table>

UNCONTROLLED DOCUMENT

NOTE: Due to AMPAC’s commitment to continuous improvement specifications may change without notice.