## apollo

## Mains Switching Input/Output Unit Installation Guide

## General

The Mains Switching Input/Output Unit, part no 55000-875, which is a loop-powered device, provides a single-pole voltage-free changeover relay output and a monitored input. It is supplied with a backbox for surface mounting.

This product is designed to installation category 2 of IEC 61010.


## Surface Mounting

1. Mount the backbox as required and install all cables for termination.
2. Remove the cover plate (if secured) from the Input/Output Unit assembly by inserting the blade of a terminal screwdriver into each of the four securing clips in turn, gently prising the outer edge of the cover plate over the clips underneath. DO NOT USE EXCESSIVE FORCE.
3. Terminate loop cables.
4. Check the status of the relay and, if necessary, reset. Power up the unit for at least 30 seconds to reset the relay.
5. Terminate the remaining cables.
6. Gently push the completed assembly towards the back box until the mounting holes are aligned and secure with the two mounting screws provided. DO NOT OVERTIGHTEN.
7. Set the address of the unit as shown on page 4
8. Finally, when commissioning is complete, fit the cover plate by placing it in position observing the correct orientation (LEDs on the PCB must be aligned with viewing holes). Apply pressure to the cover plate until all four clips are holding it in position.

## Fush Mounting

1. Secure a suitable backbox ( 35 mm minimum depth) in position and install all cables ready for termination. If the backbox is metal, ensure that earth continuity from it to the external protective earth is maintained in accordance with the relevant standard
2. Follow steps 2 to 8 overleaf.

## Wiring Details

All wiring terminals will accept solid or stranded cables up to $2.5 \mathrm{~mm}^{2}$

1
When screened loop cable is used, it is vital to connect the screen, also known as the 'functional earth', in accordance with the instructions of the control panel manufacturer. Always ensure that all segments of the loop cable have continuity of the functional earth and take care that it is insulated from any other earth point such as metalwork, cable trays or junction boxes.


Fig 1 Connecting diagram for Input/Output Unit

## Connecting the Input/ Output Unit to Extemal Equipment

The equipment connected to this Input/Output Unit must be protected by an external circuit breaker and a fuse (see 'Rated Load) on page 6). The circuit breaker should be in close proximity to the connected equipment.

External equipment should be connected only by a qualified person. The instructions of the manufacturer of that equipment should be carefully observed. If this is not done, the protection afforded by the equipment may be impaired.

Input conditions and status

| $\begin{array}{l}\text { Resistance across } \\ \text { input }\end{array}$ | Status | Analogue Value | $\begin{array}{l}\text { Input Bits } \\ \mathbf{2} \\ \mathbf{1}\end{array}$ |  | $\mathbf{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |$]$

*The values in italics are recommended values.

## Troubleshooting

Before investigating individual units for faults, it is very important to check that the system wiring is fault-free. Earth faults on a data loop or any ancillary zone wiring may cause communication errors.
Many fault conditions are the result of simple wiring errors. Check all connections to the unit and make sure that the correct value resistors are fitted where necessary.

## Fault finding

| Problem | Possible Cause |
| ---: | :--- |
| No response or missing | Incorrect address setting |
| Incorrect loop wiring |  |
| Fault condition reported | Incorrect input wiring |
| Incorrect end-of-line resistor fitted |  |
| Relay fails to operate | Incorrect wiring |
|  | Control panel has incorrect cause and effect <br> programming |
| Analogue value unstable | Dual address <br> Loop data fault, data corruption |
|  |  |

For further information on the Input/Output Unit, please refer to the Mains Switching Input/ Output Unit PIN Sheet PP2107-T

## Technical data

Loop voltage
$17-28 \mathrm{~V}$ DC
Maximum current consumption at 28 V (no protocol) LED Enabled
switch-on surge 200 ms
quiescent 20 kQ 200 ms
4 mA
quiescent, $20 \mathrm{k} \Omega$ EOL fitted
any other condition, max 2 LEDs on

## LED Disabled

switch-on surge 200 ms
quiescent, $20 \mathrm{k} \Omega \mathrm{EOL}$ fitted
4 mA
quiescent, $20 \mathrm{k} \Omega \mathrm{EOL}$ fitted
1.5 mA
switch input closed
2 mA

Rated Load
5 at 250 V AC (resistive 2 A at 48 V DC (resistive)

Max switching capacity
$1.25 \mathrm{kVA}, 96 \mathrm{~W}$
Switch input monitoring voltage (open-circuit condition)
Maximum cable resistance

## Environmental Data

Operating temperature
$-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Humidity (no condensation)
Surface temperature under maximum load Vibration
Rigidity
Dielectric strength

IP rating

Complies with EMC directive 2004/108/EC
Complies with low voltage directive 73/23/EEC
Complies with EN54-18:200

## C

## mportant notes:

1. Cable glands must be used to provide cable restraint. The size of gland must be selected according to the cable size to ensure proper restraint.

2. Knockouts should not be removed unless they are to be used for cable entry.
3. Insulating sleeves must be fitted over all single insulated conductors.
4. This product should be powered by a control panel which complies with IEC 950 or a similar safety standard
5. Ensure that segregation of the safety extra low voltage and mains voltage cables is maintained within the backbox with the leatheroid mains barrier supplied, following the instructions below:

Fold the leatheroid mains barrier in half lengthways along the pre-formed crease to form an L-shape. (See Figure 2)

Align the cut out holes of the mains barrier with the screw knockouts in the backbox and slide into place either side of the backbox pillars. (See Figure 3)

The mains barrier can only be fitted one way.
Due to the need for cable segregation, cable entry from the rear of the backbox is not recommended.

If the mains barrier is not used, then safety extra low voltage cable must notlie across the mains terminal block or the mains conductors.


Fig 2 Preparing the mains barrier


Fig 3 Correct placing of mains barrie

## Address Setting

The address of the Input/Output Unit is set using the lower seven segments of the DIL switch. Each segment of the switch must be set to "0" or "1", using a small screwdriver or similar tool


Fig 4 Example of DIL switch setting using address 91

A complete list of address settings is shown below.

| addr | DIL switch setting 1234567 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1000000 | 11 | 1101000 | 21 | 1010100 | 31 | 1111100 | 41 | 1001010 |
| 2 | 0100000 | 12 | 0011000 | 22 | 0110100 | 32 | 0000010 | 42 | 0101010 |
| 3 | 1100000 | 13 | 1011000 | 23 | 1110100 | 33 | 1000010 | 43 | 1101010 |
| 4 | 0010000 | 14 | 0111000 | 24 | 0001100 | 34 | 0100010 | 44 | 0011010 |
| 5 | 1010000 | 15 | 1111000 | 25 | 1001100 | 35 | 1100010 | 45 | 1011010 |
| 6 | 0110000 | 16 | 0000100 | 26 | 0101100 | 36 | 0010010 | 46 | 0111010 |
| 7 | 1110000 | 17 | 1000100 | 27 | 1101100 | 37 | 1010010 | 47 | 1111010 |
| 8 | 0001000 | 18 | 0100100 | 28 | 0011100 | 38 | 0110010 | 48 | 0000110 |
| 9 | 1001000 | 19 | 1100100 | 29 | 1011100 | 39 | 1110010 | 49 | 1000110 |
| 10 | 0101000 | 20 | 0010100 | 30 | 0111100 | 40 | 0001010 | 50 | 0100110 |
| 51 | 1100110 | 61 | 1011110 | 71 | 1110001 | 81 | 1000101 | 91 | 1101101 |
| 52 | 0010110 | 62 | 0111110 | 72 | 0001001 | 82 | 0100101 | 92 | 0011101 |
| 53 | 1010110 | 63 | 111110 | 73 | 1001001 | 83 | 1100101 | 93 | 1011101 |
| 54 | 0110110 | 64 | 0000001 | 74 | 0101001 | 84 | 0010101 | 94 | 0111101 |
| 55 | 1110110 | 65 | 1000001 | 75 | 1101001 | 85 | 1010101 | 95 | 1111101 |
| 56 | 0001110 | 66 | 0100001 | 76 | 0011001 | 86 | 0110101 | 96 | 0000011 |
| 57 | 1001110 | 67 | 1100001 | 77 | 1011001 | 87 | 1110101 | 97 | 1000011 |
| 58 | 0101110 | 68 | 0010001 | 78 | 0111001 | 88 | 0001101 | 98 | 0100011 |
| 59 | 1101110 | 69 | 1010001 | 79 | 1111001 | 89 | 1001101 | 99 | 1100011 |
| 60 | 0011110 | 70 | 0110001 | 80 | 0000101 | 90 | 0101101 | 100 | 0010011 |
| 101 | 1010011 | 111 | 1111011 | 121 | 1001111 |  |  |  |  |
| 102 | 0110011 | 112 | 0000111 | 122 | 0101111 |  |  |  |  |
| 103 | 1110011 | 113 | 1000111 | 123 | 1101111 |  |  |  |  |
| 104 | 0001011 | 114 | 0100111 | 124 | 001111 |  |  |  |  |
| 105 | 1001011 | 115 | 1100111 | 125 | 1011111 |  |  |  |  |
| 106 | 0101011 | 116 | 0010111 | 126 | 011111 |  |  |  |  |
| 107 | 1101011 | 117 | 1010111 |  |  |  |  |  |  |
| 108 | 0011011 | 118 | 0110111 |  |  |  |  |  |  |
| 109 | 1011011 | 119 | 1110111 |  |  |  |  |  |  |
| 110 | 0111011 | 120 | 000111 |  |  |  |  |  |  |

## Commissioning

It is important that the Input/Output Unit be fully tested after installation. An XP95 Test Set part no 55000-870, may be used to carry out functional testing of individual units. It can also be used to perform data integrity tests of an entire loop.

## LED Indicators

- Relay On Illuminated red when relay is energised
$\odot$ Switch Closed Illuminated red when monitored field contact is activated
$\odot$ Fault Illuminated yellow when input is open or short circuit

To conserve loop current the LEDs can be disabled by setting the 'LED ENABLE' segment of the DIL switch to ' 0 '.

## Functional Test Data

# output bit function 

| 2 | not used |
| :--- | :--- |
| 1 | not used |
| 0 | operates relay |
|  | $1=$ on |
|  | $0=$ off |

## input bit function

2 not used
0 not used
$0=$ quiescent
1 = input received

For further information on protocol bit usage refer to the Mains Switching Input/Output Unit PIN sheet, PP2107-T

